## 13. On a Sequence of Fourier Coefficients

By Hiroshi Hirokawa and Ikuko Kayashima
Department of Mathematics, Chiba University, Chiba (Comm. by Kinjirô Kunugi, m. J. A., Jan. 12, 1974)
§ 1. Let $f(t)$ be a periodic function with period $2 \pi$ and integrable $(L)$ over $(-\pi, \pi)$. Let its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=0}^{\infty} A_{n}(t) . \tag{1.1}
\end{equation*}
$$

Then the conjugate series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n t-a_{n} \sin n t\right)=\sum_{n=1}^{\infty} B_{n}(t) . \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence such that $P_{n}=\sum_{k=0}^{n} p_{k} \neq 0$ for $n=0,1,2, \ldots$ A series $\sum_{n=0}^{\infty} a_{n}$ with its partial sum $s_{n}$ is said to be summable ( $N, p_{n}$ ) to sum $s$, if

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k} \rightarrow s \quad \text { as } \quad n \rightarrow \infty
$$

The $\left(N, p_{n}\right)(C, 1)$ method is obtained by superimposing the method ( $N, p_{n}$ ) on the Cesàro means of order one.
Throughout this paper, let $\left\{p_{n}\right\}$ be a sequence such that $p_{n} \geqq 0, p_{n} \downarrow$, $P_{n} \rightarrow \infty$, and we write

$$
\begin{gathered}
\psi(t)=f(x+t)-f(x-t)-l, \\
\Psi(t)=\int_{0}^{t}|\psi(u)| d u
\end{gathered}
$$

and $\tau=[1 / t]$, where $[\lambda]$ is the integral part of $\lambda$.
§ 2. Varshney [9] proved that if

$$
\begin{equation*}
\Psi(t)=o\left(t / \log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0 \tag{2.1}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 /(n+1))(C, 1)$ to $l / \pi$. This was generalized by Sharma [6], Singhal [8] and Dikshit [1], respectively, as follows.

Theorem A (Sharma [6]). If

$$
\begin{equation*}
\Psi(t)=o(t) \quad \text { as } \quad t \rightarrow+0 \tag{2.2}
\end{equation*}
$$

and, for some fixed $\delta, 0<\delta<1$,

$$
\begin{equation*}
\int_{t}^{\delta} \frac{|\psi(u)|}{u} \log \frac{1}{u} d u=o\left(\log t^{-1}\right) \quad \text { as } \quad t \rightarrow+0, \tag{2.3}
\end{equation*}
$$

then the sequence $\left\{n B_{n}(x)\right\}$ is summable $(N, 1 /(n+1))(C, 1)$ to $l / \pi$.
Remark 1. (2.3) implies (2.2), because

