13. On a Sequence of Fourier Coefficients

By Hiroshi HIROKAWA and Ikuko KAYASHIMA Department of Mathematics, Chiba University, Chiba

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1974)

§ 1. Let f(t) be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Let its Fourier series be

(1.1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t)$$

Then the conjugate series of (1.1) is

(1.2)
$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t).$$

Let $\{p_n\}$ be a sequence such that $P_n = \sum_{k=0}^n p_k \neq 0$ for $n = 0, 1, 2, \cdots$. A

series $\sum_{n=0}^{\infty} a_n$ with its partial sum s_n is said to be summable (N, p_n) to sum s, if

$$\frac{1}{P_n}\sum_{k=0}^n p_{n-k}s_k \to s \quad \text{as} \quad n \to \infty.$$

The $(N, p_n)(C, 1)$ method is obtained by superimposing the method (N, p_n) on the Cesàro means of order one.

Throughout this paper, let $\{p_n\}$ be a sequence such that $p_n \ge 0$, $p_n \downarrow$, $P_n \rightarrow \infty$, and we write

$$\psi(t) = f(x+t) - f(x-t) - l_{x}$$
$$\Psi(t) = \int_{0}^{t} |\psi(u)| \, du$$

and $\tau = [1/t]$, where $[\lambda]$ is the integral part of λ .

§ 2. Varshney [9] proved that if

(2.1)
$$\Psi(t) = o(t/\log t^{-1})$$
 as $t \to +0$

then the sequence $\{nB_n(x)\}$ is summable (N, 1/(n+1))(C, 1) to l/π . This was generalized by Sharma [6], Singhal [8] and Dikshit [1], respectively, as follows.

Theorem A (Sharma [6]). If

(2.2) $\Psi(t) = o(t) \quad as \quad t \to +0,$

and, for some fixed $\delta, 0{<}\delta{<}1$,

(2.3)
$$\int_{t}^{\delta} \frac{|\psi(u)|}{u} \log \frac{1}{u} du = o(\log t^{-1}) \quad as \quad t \to +0,$$

then the sequence $\{nB_n(x)\}$ is summable (N, 1/(n+1))(C, 1) to l/π .

Remark 1. (2.3) implies (2.2), because