12. A Characterization of Nonstandard Real Fields

By Shouro KASAHARA Kobe University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1974)

Throughout this note, $(R, 0, 1, +, \cdot, \leq)$, or simply R, denotes the ordered field of real numbers, and \hat{R} the union of all sets R_n defined inductively by $R_0 = R$ and $R_{n+1} = \mathcal{P}(\bigcup_{i=0}^n R_i)$ $(n=0,1,2,\cdots)$, where $\mathcal{P}(X)$ denotes the power set of X. Let \mathcal{U} be a δ -incomplete ultrafilter on an infinite set I. A nonstandard real number is defined to be an individual of the ultrapower of \hat{R} with respect to \mathcal{U} , and the set *R of all nonstandard real numbers to \mathcal{U} , and the set *R of all nonstandard real numbers to \mathcal{U} , and the set *R of all nonstandard real numbers if \hat{R}^I defined by *a(t)=a for all $t \in I$, where = and \in in \hat{R}^I are defined for $a, b \in \hat{R}^I$ as follows: a=b if and only if $\{t \in I : a(t)=b(t)\} \in \mathcal{U}$, and $a \in b$ if and only if $\{t \in I : a(t) \in b(t)\} \in \mathcal{U}$. Then as is known*', $(*R, *0, *1, *+, *\cdot, *\leq)$ is a totally ordered field which will be referred in this note as the \mathcal{U} -nonstandard real field. Let I be a set. By nonstandard real field over I we mean a totally ordered field which is isomorphic to some \mathcal{U} -nonstandard real field for a δ -incomplete ultrafilter \mathcal{U} on I.

The purpose of this note is to state a condition characterizing nonstandard real fields among totally ordered fields.

Theorem 1. A totally ordered field K is a nonstandard real field over a set I if and only if it is non-Archimedean and is a homomorphic image of R^{I} , the ring of all real valued functions on I with the pointwise addition and the pointwise multiplication.

This result offers of course an axiom system for a nonstandard real field: A nonstandard real field over a set I is defined to be any non-Archimedean totally ordered field K containing a complete Archimedean subfield R_0 such that K is a homomorphic image of the ring R_0^{ℓ} .

Let K be a totally ordered field. An element x of K is said to be infinitely large if a < x for every rational element $a \in K$. Let I be a set. For each real number a, let *a denote the constant mapping on I defined by *a(t)=a for all $t \in I$. The ordering \leq on the ring R^I is defined as follows: $a \leq b$ if and only if $a(t) \leq b(t)$ for all $t \in I$.

Proof of Theorem 1. It suffices to prove the "if" part. Let φ be the homomorphism of the ring R^I onto K, that is, φ is a mapping of R^I onto K such that $\varphi(\mathbf{a}+\mathbf{b})=\varphi(\mathbf{a})+\varphi(\mathbf{b})$ and $\varphi(\mathbf{a}\mathbf{b})=\varphi(\mathbf{a})\varphi(\mathbf{b})$ for all

^{*)} See for example, W. A. J. Luxemburg: What is nonstandard analysis. Amer. Math. Monthly, **80**, 38-67 (1973).