9. On the Completions of Maps

By Tadashi ISHII Shizuoka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

In this paper all spaces are assumed to be completely regular T_2 . Let f be a continuous map from a space X into a space Y. As is well known, there exists its extension $\beta(f): \beta(X) \rightarrow \beta(Y)$, where $\beta(S)$ denotes the Stone-Čech compactification of a space S. Furthermore, it is known that $\beta(f)$ carries $\mu(X)$ into $\mu(Y)$ and $\nu(X)$ into $\nu(Y)$ ([14], [3]), where $\mu(X)$ is the topological completion of X (that is, the completion of X with respect to its finest uniformity μ) and $\nu(X)$ is the realcompactification of X. We denote the restriction maps $\beta(f)|\mu(X)$ and $\beta(f)|\nu(X)$ by $\mu(f)$ and $\nu(f)$ respectively.

The purpose of this paper is to study the relations between f and $\mu(f)$ (or v(f)).

We note first that $\mu(f): \mu(X) \to \mu(Y)$ and $\nu(f): \nu(X) \to \nu(Y)$ are not necessarily perfect even if $f: X \to Y$ is perfect. A continuous map ffrom a space X onto a space Y is called a quasi-perfect (perfect) map if f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Example. Let Y be a pseudo-compact space such that the preimage X of Y under a perfect map f is not pseudo-compact ([4, Example 4.2]). Then both $\mu(f): \mu(X) \rightarrow \mu(Y)$ and $v(f): v(X) \rightarrow v(Y)$ are not perfect, since $\mu(X)$ and v(X) are not compact, while $\mu(Y)$ and v(Y) are compact (cf. [14], [3]).

In view of these results, it is significant to study under what conditions $\mu(f)$ (or $\nu(f)$) is perfect.

Theorem 1. If $f: X \to Y$ is an open quasi-perfect map, then $\mu(f): \mu(X) \to \mu(Y)$ and $\nu(f): \nu(X) \to \nu(Y)$ are open perfect.

To prove this theorem, we use the following lemmas.

Lemma 2 (Zenor [17]). Let C(X) be the space of all the non-empty compact sets in a space X with the finite topology. If X is topologically complete, so is C(X).

The finite topology of C(X) is defined as follows: For any finite number of open sets $\{U_1, \dots, U_n\}$ of X, we set $[U_1, \dots, U_n] = \{K \in C(X) | K \subset \bigcup_{i=1}^n U_i, K \cap U_i \neq \emptyset \text{ for } i=1, \dots, n\}$. As an open base of C(X) we take all such sets. It is well known that if X is completely regular then so is C(X) (Michael [12]).