9. On the Completions of Maps

By Tadashi ISHII
Shizuoka University
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1974)

In this paper all spaces are assumed to be completely regular T_{2}. Let f be a continuous map from a space X into a space Y. As is well known, there exists its extension $\beta(f): \beta(X) \rightarrow \beta(Y)$, where $\beta(S)$ denotes the Stone-Čech compactification of a space S. Furthermore, it is known that $\beta(f)$ carries $\mu(X)$ into $\mu(Y)$ and $v(X)$ into $v(Y)$ ([14], [3]), where $\mu(X)$ is the topological completion of X (that is, the completion of X with respect to its finest uniformity μ) and $v(X)$ is the realcompactification of X. We denote the restriction maps $\beta(f) \mid \mu(X)$ and $\beta(f) \mid v(X)$ by $\mu(f)$ and $v(f)$ respectively.

The purpose of this paper is to study the relations between f and $\mu(f)$ (or $v(f)$).

We note first that $\mu(f): \mu(X) \rightarrow \mu(Y)$ and $v(f): v(X) \rightarrow \nu(Y)$ are not necessarily perfect even if $f: X \rightarrow Y$ is perfect. A continuous map f from a space X onto a space Y is called a quasi-perfect (perfect) map if f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Example. Let Y be a pseudo-compact space such that the preimage X of Y under a perfect map f is not pseudo-compact ([4, Example 4.2]). Then both $\mu(f): \mu(X) \rightarrow \mu(Y)$ and $v(f): v(X) \rightarrow v(Y)$ are not perfect, since $\mu(X)$ and $v(X)$ are not compact, while $\mu(Y)$ and $v(Y)$ are compact (cf. [14], [3]).

In view of these results, it is significant to study under what conditions $\mu(f)$ (or $v(f)$) is perfect.

Theorem 1. If $f: X \rightarrow Y$ is an open quasi-perfect map, then $\mu(f): \mu(X) \rightarrow \mu(Y)$ and $v(f): v(X) \rightarrow v(Y)$ are open perfect.

To prove this theorem, we use the following lemmas.
Lemma 2 (Zenor [17]). Let $C(X)$ be the space of all the non-empty compact sets in a space X with the finite topology. If X is topologically complete, so is $C(X)$.

The finite topology of $C(X)$ is defined as follows: For any finite number of open sets $\left\{U_{1}, \cdots, U_{n}\right\}$ of X, we set $\left[U_{1}, \cdots, U_{n}\right]=\{K$ $\in C(X) \mid K \subset \bigcup_{i=1}^{n} U_{i}, K \cap U_{i} \neq \emptyset$ for $\left.i=1, \cdots, n\right\}$. As an open base of $C(X)$ we take all such sets. It is well known that if X is completely regular then so is $C(X)$ (Michael [12]).

