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1o Introduction. All spaces are assumed to be completely regular

T unless otherwise specified. This paper is mainly concerned with
paracompactness of the completion/(X) of a space X with respect to
its finest uniformity /. Such completion of a space X is called the
topological completion of X (or the completion in the sense of
Dieudonn). Following Morita [12], a space X is said to be pseudo-
paracompact (resp. pseudo-LindelSf etc.) if/(X) is paracompact (resp.
LindelSf etc.). Since for any M-space X/(X) is a paracompact M-
space ([12]), every M-space is pseudo-paracompact.

The purpose of this paper is to study some properties of pseudo-
paracompact spaces. The details will be published elsewhere.

2. Characterizations of pseudo.paracompact spaces. An open
covering (C)={O} of a space X is said to be extendable to/(X) if there
exists an open covering (C)-{0} of/(X) such that O--OX for each
r. We note that every normal open covering of X is extendable to
/(X) as a normal open covering (cf. [9, (I) Lemma 8 and (II) Lemma
1]).

Now let {1I1 e A} be the set of all the normal open coverings of a
space X. A filter --{F} in X is said to be weakly Cauchy with
respect to the uniformity / if for any 2 e A there exists U e 1 such
that UF4= for every a. In other words, a filter is weakly
Cauchy if for any e A there exists a stronger filter than such
that Lc U for some U e 1 and L e . We state first the necessary
and sufficient conditions for a space X to be pseudo-paracompact, some
of which are the modifications of Corson’s theorem [1] for the
characterizations of paracompact spaces.

Theorem 2.1. For a space X, the following conditions are
equivalent.

(a) X is pseudo-paracompact.
(b) Every open covering of X which is extendable to I(X) is a

normal covering.
(c) The product of X with every compact space is pseudo-normal.
(d) Every weakly Cauchy filter in X with respect to l is contained

in some Cauchy filter with respect to/.
(e) If is a filter in X such that the image of has a cluster


