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1. Introduction. The purpose of this note is to give another
easier proof of the theorem of integral representation for hyperiunction
solutions o] linear partial differential equations with constant coeffi-
cients.which was first ormulated and proved in Kaneko [3], [4].

Most results in the general theory of systems of linear partial
differential equations with constant coefficients are deduced from
Ehrenpreis’ Fundamental Principle (cf. Ehrenpreis [1], [2] and
Palamodov [6]), which says the following"

Let denote the ring of linear partial differential operators with
constant coefficients in n variables. Given an r r0 matrix P(D) with
elements in , we can define a multiplicity variety 3 which is a set of
finite pairs of irreducible affine algebraic varieties V in C and row
vectors 3(5, D:) of length r0 whose elements are differential operators
in C with polynomial coefficients (which are called noetherian operators
in Palamodov [6]). Let be a certain function space oi -module.
Then every kernel u of the map P(D)" ’o" can be expressed in
the form

taa(, D:) <s/-:- >(1) u(x)= exp x
where each Z is a measure with support in V which satisfies some
growth conditions at infinity determined by . The integral converges
in the topology of .

When is the space of distributions or infinitely differentiable
functions on a convex domain in R or holomorphic functions on a
convex domain in C, the above statement is proved by Ehrenpreis [2]
and Palamodov [6]. In case is the space of hyperfunctions _(9) on
a convex domain tO in R, the measures in (1) satisfy

( 2 ) { exp (--e I1 +H()) Id/(5)l , for v0, vKtg,
J

where H() =sup Re (:-- x, }. The integral is considered in the
sense of hyperfunctions. (See Kaneko [3] or the proof below.) We
give a proof in this case using the result in the case when is the space
of holomorphic unctions.

2. Proof. Set U={zeC;Rez--(Rez,...,Rez)et0} and U
{z e U; Im z :/: 0}. Since U and U are Stein open sets in C, Leray’s


