3. The Fundamental Solution for a Degenerate Parabolic Pseudo-Differential Operator

By Chisato Tsutsumi
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

Introduction. In the present paper we shall construct the fundamental solution $U(t)$ for a degenerate parabolic pseudo-differential equation of the form

$$
\left\{\begin{array}{l}
L u=\frac{\partial u}{\partial t}+p(t ; x, D) u=0 \quad \text { in }(0, T) \times R^{n} \tag{0.1}\\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

where $p(t ; x, D)$ is a pseudo-differential operator of class $\mathcal{E}_{t}^{0}\left(S_{\rho, \delta}^{m}\right)$ which satisfies conditions (cf. [1], [5]):
(i) There exist constant C and $m^{\prime}\left(0 \leqq m^{\prime} \leqq m\right)$ such that

$$
\begin{equation*}
\operatorname{Re} p(t ; x, \xi) \geqq C\langle\xi\rangle^{m^{\prime}} \quad \text { uniformly in } t \quad(0 \leqq t \leqq T) . \tag{0.2}
\end{equation*}
$$

(ii) For any multi index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$ there exists a constant $C_{\alpha, \beta}$ such that

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi) / \operatorname{Re} p(t ; x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|} \tag{0.3}
\end{equation*}
$$

uniformly in $t \quad(0 \leqq t \leqq T)$,
where $p_{(\beta)}^{(\alpha)}(t ; x, \xi)=\left(\partial / \partial \xi_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial \xi_{n}\right)^{\alpha_{n}}\left(-i \partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\beta_{n}} p(t ; x, \xi)$, $|\alpha|=\left|\alpha_{1}\right|+\cdots+\left|\alpha_{n}\right|,|\beta|=\left|\beta_{1}\right|+\cdots+\left|\beta_{n}\right|$ and $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$.

The fundamental solution $U(t)$ will be found as a pseudo-differential operator of class $S_{\rho, \delta}^{0}$ with parameter t. Then the solution of the Cauchy problem (0.1) is given by $u(t)=U(t) u_{0}$ for $u_{0} \in L^{2}$ and moreover for $u_{0} \in L^{p}(1<p<\infty)$ in case $\rho=1$, using that operators of class $S_{\rho, \delta}^{m}$ are bounded in L^{2} for $0 \leqq \delta<\rho \leqq 1$, in L^{p} for $0 \leqq \delta<1, \rho=1$ (see [1][3]).

The solution $U(t)$ is given in the form $U(t)=e(t, 0 ; x, D)$ where $e(t, s ; x, D)$ is the solution of an operator equation

$$
\left\{\begin{array}{l}
L_{x, t} e(t, s ; x, D)=0 \quad \text { in } t>s \quad(0 \leqq s<t \leqq T) \\
\left.e(t, s ; x, D)\right|_{t=s}=I,
\end{array}\right.
$$

which can be reduced to an integral equation of the form

$$
\begin{equation*}
r_{N}(t, s ; x, D)+\varphi(t, s ; x, D)+\int_{s}^{t} r_{N}(t, \sigma ; x, D) \varphi(\sigma, s ; x, D) d \sigma=0 \tag{0.4}
\end{equation*}
$$

where $r_{N}(t, s ; x, D)$ is a known operator of class $S_{\rho, \delta}^{m-(\rho-\delta)(N+1)}$. To solve (0.4), we shall calculate the symbol for multi product of pseudo-differential operators in precise form by using oscillatory integrals in [4] and [6].

1. Notations and Theorem. We shall denote by $S_{\rho, \delta}^{m}(0 \leqq \delta<\rho \leqq 1$,
