1. On the Degenerate Oblique Derivative Problems

By Akira Kaji

Department of Mathematics, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1974)

§ 1. Introduction and results. In this note we give a priori estimates and existence theorems for the degenerate oblique derivative problems, which will be formulated below. We first reduce the given boundary value problems to the pseudo-differential equations on the boundary with the aid of suitable boundary value problems which are well studied, and next apply Melin's theorem (see [5], Theorem 3.1) to the pseudo-differential equations on the boundary.

Let Ω be a bounded domain in \mathbb{R}^n , and we assume that $\Omega \cup \partial \Omega$ is a C^{∞} -manifold with boundary. Let a(x), b(x) and c(x) be real-valued functions $\in C^{\infty}(\partial \Omega)$, **n** be the unit exterior normal to $\partial \Omega$ and $\boldsymbol{\nu}$ be a real C^{∞} -vector field on $\partial \Omega$.

Now we consider, for $\lambda > 0$, the degenerate oblique derivative problem:

(I)
$$\begin{cases} (\lambda - \Delta)u = f & \text{in } \Omega, \\ a(x)\frac{\partial u}{\partial n} + b(x)\frac{\partial u}{\partial \nu} + c(x)u = 0 & \text{on } \partial\Omega, \end{cases}$$

under the following assumptions:

(1) $a(x) \ge 0$.

(2) The set $S = \{x \in \partial \Omega ; a(x) = 0\}$ is an (n-2)-dimensional C^{∞} -manifold.

(3) $\boldsymbol{\nu}$ is transversal to S in $\partial \Omega$.

(4) c(x) > 0 on the set $\{x \in \partial \Omega : a(x) = 0\}$.

(5) Along the integral curve $x(t, x_0)$ of ν passing $x_0 \in S$ when $t=0, a(x(t, x_0))$ has a zero of finite order k at t=0, and $b(x(t, x_0))$ has a zero of finite order l at t=0, where k and l are independent of x_0 .

Remark 1. In the case where $b(x) \neq 0$ on *S*, our problem is the oblique derivative problem which has been already treated by several authors and we can remove the assumption (4) (see [2] and [6]). In the case where $b(x) \equiv 0$, our problem was treated by S. Itô (see [3]) and we can also remove the assumptions (2) and (5) (see the proof below).

For each real s, we denote by $H_s(\Omega)$ and $H_s(\partial\Omega)$ the usual Sobolev spaces on Ω and $\partial\Omega$ respectively, and by $\| \|_{s,\rho}$ and $\| \|_{s,\rho}$ norms in these spaces.

Theorem 1. Assume that $l \ge k$ and the assumptions (1), (2), (4) and (5) hold. Then there is a positive constant C such that, for $u \in L^2(\Omega)$