34. Note on Products of Symmetric Spaces

By Yoshio TANAKA

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1974)

1. Introduction: In [7, Corollary 4.4], we have shown that if X is a locally compact, symmetric space and Y is a symmetric space, then $X \times Y$ is a symmetric space.

In this note, we shall show this result is the best possible. Namely, we have

Theorem. Let X be a regular space. Then the following are equivalent.

(a): X is a locally compact, symmetric space.

(b): $X \times Y$ is a symmetric space for every symmetric space Y.

According to A. V. Arhangel'skii [1], a space X is symmetric, if there is a real valued, non-negative function d defined on $X \times X$ satisfying the following:

(1): d(x, y)=0 whenever x=y, (2): d(x, y)=d(y, x), and (3): $A \subset X$ is closed in X whenever d(x, A)>0 for any $x \in X-A$.

Metric spaces and semi-metric spaces are symmetric.

We assume all spaces are Hausdorff.

2. Proof of Theorem. For proof, we use the method in [3, Theorem 2.1].

The implication (a) \Rightarrow (b) follows from [7, Corollary 4.4].

To prove the implication (b) \Rightarrow (a), suppose that $X \times Y$ is a symmetric space for every symmetric space Y, and that a regular space X is not locally compact.

Since a countably compact, symmetric space is compact [5, Corollary 2], X is not a locally countably compact space.

Then there are a point $x_0 \in X$ and a local base $\{U_{\alpha} : \alpha \in A\}$ at x_0 such that each \overline{U}_{α} is not countably compact. Hence, for each $\alpha \in A$, there is an infinite, discrete closed subset $\{x_i^{\alpha} : i=1, 2, \cdots\}$ of X such that $x_i^{\alpha} \in \overline{U}_{\alpha}$.

Topologize A with discrete topology. Let $A_i = A \times \{i\}$ for each positive integer *i*, and let $\sum_{i=1}^{\infty} A_i$ be the topological sum of A_i . Let $X_1 = \sum_{i=1}^{\infty} A_i$ $\cup \{\infty\}$ and let $\{V_j(\infty) : j = 1, 2, \cdots\}$ be a local base at the point ∞ , where $V_j(\infty) = \{\infty\}^{\cup} \bigcup_{k \ge j} A_k$. Then a regular space X_1 has a σ -locally-finite base. By J. Nagata and Yu. M. Smirnov Metrization Theorem, X_1 is a metrizable space.

Let $[0, \omega]$ be the ordinal space, where ω is the first countable ordinal number.