22. Uniqueness in the Cauchy Problem for Partial Differential Equations with Multiple Characteristic Roots

By Waichirô Matsumoto
Kyoto University
(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1974)

1. Introduction. We are concerned with the uniqueness theorem in the Cauchy problem for the following type of partial differential equations:

$$
P u \equiv \partial_{t}^{m} u+\sum_{|\alpha|+j \leqslant m} a_{\alpha, j}(x, t) \partial_{x}^{\alpha} \partial_{t}^{j} u=0, \quad\left(x \in R^{l}\right)
$$

Here we assume $a_{\alpha, j}(x, t)$ are sufficiently smooth functions. In the case where the characteristic roots are simple and the coefficients $a_{\alpha, j}(x, t)$ $(|a|+j=m)$ are all real, A. P. Calderón [1] proved the uniqueness theorem in 1958. When (x, t) is two-dimensional, T. Carleman [2] obtained the same result as early as 1938. S. Mizohata [6] proved the uniqueness in the case of elliptic type of order 4 with smooth characteristic roots. Many authors have studied the uniqueness with at most double smooth characteristic roots ([3], [5], etc.). Then a study for elliptic type with triple characteristic roots, was made by K. Watanabe [10], under the assumption that the multiplicity of the characteristic roots is constant.

The purpose of this note is to announce with a short proof a result on the uniqueness theorem for operators with multiple characteristic roots. A forthcoming article will give a detailed proof. Let us consider the following type of operator:

$$
P=P_{p}\left(x, t ; \partial_{x}, \partial_{t}\right)^{m}+P_{m p-1}\left(x, t ; \partial_{x}, \partial_{t}\right)+R\left(x, t ; \partial_{x}, \partial_{t}\right),
$$

where $m \geqslant 2$ and $p \geqslant 1$. Here we assume that, 1) P_{p} is a homogeneous partial differential operator of order p with real coefficients, continuously differentiable up to order $l+\max \{m p, 6\}$. Moreover its characteristic roots $\left\{\lambda_{j}(x, t ; \xi)\right\}_{1 \leqslant j \leqslant p}$ of $P_{p}(x, t ; \xi, \lambda)=0$ are distinct for all real $\xi(\neq 0), 2) P_{m p-1}$ is a homogeneous partial differential operator of order $m p-1$ with real coefficients belonging to $C^{l+\max (m p-1,5)}$, 3) R is a partial differential operator of order at most $m p-2$, with bounded measurable coefficients.

Let $\left\{\lambda_{j}(x, t ; \xi)\right\}_{1 \leqslant j \leqslant p}$ be the characteristic roots of P_{p}. We introduce the following conditions.
(A) $\left.\quad P_{m p-1}(0,0 ; \xi, \tau)\right|_{\tau=\lambda_{j}(0,0 ; \xi)} \neq 0 \quad$ for all $\xi \in R^{l}-\{0\} \quad(1 \leqslant j \leqslant p)$
($\left.\mathrm{B}_{1}\right)\left.\quad P_{m p-1}(x, t ; \xi, \tau)\right|_{\tau=\lambda_{j}(x, t ; \xi)} \equiv 0 \quad$ for all $(x, t, \xi) \in U \times\left(R^{l}-\{0\}\right)$
$(1 \leqslant j \leqslant p)$

