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1. Introduction. We are concerned with the uniqueness theorem
in the Cauchy problem for the following type of partial differential
equations:

Pu=otu+ 3, a,(x,t)ozo{u=0, (x e RY).

lal+ji<m
Here we assume a, ,(x,t) are sufficiently smooth functions. In the case

where the characteristic roots are simple and the coefficients a,, ,(x, )
(a|+j=m) are all real, A.P. Calderén [1] proved the uniqueness
theorem in 1958. When (z,t) is two-dimensional, T. Carleman [2]
obtained the same result as early as 1938. S. Mizohata [6] proved the
uniqueness in the case of elliptic type of order 4 with smooth charac-
teristic roots. Many authors have studied the uniqueness with at
most double smooth characteristic roots ([3], [5], etc.). Then a study
for elliptic type with triple characteristic roots, was made by

K. Watanabe [10], under the assumption that the multiplicity of the
characteristic roots is constant.

The purpose of this note is to announce with a short proof a result
on the uniqueness theorem for operators with multiple characteristic
roots. A forthcoming article will give a detailed proof. Let us con-
sider the following type of operator:

P=Pp(x’ t; ax, at)m+Pmp—1(x7 t; 0z, at)+R(x, t; aan at)’

where m>2 and p>1. Here we assume that, 1) P, is a homogeneous
partial differential operator of order p with real coefficients, con-
tinuously differentiable up to order l+max {mp,6}. Moreover its
characteristic roots {1,(x, ¢ ; &}<;<, of P,(x,t; & )=0 are distinct for
all real £(#0), 2) P,,_, is a homogeneous partial differential operator
of order mp—1 with real coefficients belonging to Ct*=eximp-18"3) R jg
a partial differential operator of order at most mp—2, with bounded
measurable coefficients.

Let {2,(x, t; ©)}<s<p be the characteristic roots of P,. We introduce
the following conditions.

(A) P,y i0,0;8,0)].cs000%0 foralléeR'—{0} (A<i<p)
(Bl) Pmp~1(x, t; ‘S’ T) 'r=1j(x,t;5) EO fOI' all (x’ t’ S) € U>< (Rl_{O})
A<i<p)



