49. On Fixed Point Theorem

By Yasujirô Nagakura
Science University of Tokyo
(Comm. by Kinjirô Kunugi, m. J. A., March 12, 1974)

In this paper we shall prove a fixed point theorem by the method of ranked space. The linear operator in the following theorem is not necessarily continuous. Throughout this note, g, f, x, y, z, \cdots will denote points of a ranked space, U_{i}, V_{i}, \cdots neighbourhoods at the origin with rank i and $\left\{U_{r_{i}}\right\},\left\{V_{r_{i}}\right\}, \cdots$ fundamental sequences of neighbourhoods with respect to the origin. Let a linear space E be a ranked space with indicator ω_{0}, which satisfies the following conditions:
(1) For any neighbourhood U_{i}, the origin belongs to U_{i}.
(2) For any neighbourhood U_{i}, and for any integer n, there is $(\mathrm{E}, 1) \quad$ an m such that $m \geqq n$ and $U_{m} \subseteq U_{i}$.
(3) The space E is the neighbourhood at the origin with rank zero.
Furthermore we define $g+U_{i}$ as a neighbourhood at point g with rank i. Then the space E is called a pre-linear ranked space. Moreover the space E having the following conditions ($\mathrm{E}, 2$) and ($\mathrm{E}, 3$), is called a linear ranked space.
(E,2) The following conditions are the modification of the Washihara's conditions [3].
($\mathrm{R}, \mathrm{L}_{1}$) For any $\left\{U_{r_{i}}\right\}$ and $\left\{V_{r_{i}}\right\}$, there is a $\left\{W_{r_{i}}^{\prime \prime}\right\}$ such that

$$
U_{r_{i}}+V_{r_{i}^{\prime}} \underline{\underline{c}} W_{r_{i}^{\prime}}
$$

$\left(\mathrm{R}, \mathrm{L}_{2}\right)^{\prime \prime}$ For any $\left\{U_{r_{t}}\right\}$ and any $\lambda>0$, there are a $\left\{U_{r_{i}^{\prime}}\right\}$, all of whose members belong to $\left\{U_{r_{i}}\right\}$ and a natural number j such that

$$
\lambda U_{r_{i}} \subseteq U_{r_{i}^{\prime}} \quad \text { for all } i(i \geqq j)
$$

$(\mathrm{E}, 3) \quad$ For any neighbourhood U_{i} and any $\lambda(0 \leqq \lambda \leqq 1), \lambda U_{i} \subseteq U_{i}$.
Definition 1 (T_{1}-space). A pre-linear ranked space E is called a T_{1}-space if for any $g, f(g \neq f, g \in E, f \in E)$ and any fundamental sequence at the origin $\left\{U_{r_{i}}\right\}$ there exists some $U_{r_{j}}$ belonging to $\left\{U_{r_{i}}\right\}$ such that $g+U_{r_{j}} \nexists f$.

Definition 2 (T_{2}-space). A pre-linear ranked space E is called a T_{2}-space if for any $g, f(g \neq f, g \in E, f \in E)$ and any fundamental sequence at the origin $\left\{U_{r_{i}}\right\}$ there exist some $U_{r_{j}}$ and $U_{r_{k}}$ belonging to $\left\{U_{r_{i}}\right\}$ such that $\left(g+U_{r_{j}}\right) \cap\left(f+U_{r_{k}}\right)=\phi$.

Lemma 1. Let E be a T_{1} pre-linear ranked space, all of whose neighbourhoods at the origin are symmetric $(U=-U)$. Then the space E is a T_{2}-space.

