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1. Introduction. Let A be a positive homogeneous elliptic
operator with constant coefficients defined on R*. We consider the
eigenvalue problem of the following form
1.1) Au—pu=2iu.

Here p(x) is a positive function with lim,, ., p(®)=0. If p(x) does not
approach to zero too rapidly at infinity, then the operator A —p has an
infinite sequence of negative eigenvalues approaching to zero. We
denote by n(r) (r>0) the number of eigenvalues less than —# of problem
(1.1). In this note we study the asymptotic behavior of n(r) as r—0.
The asymptotic behavior for the Schridinger operator witha non-smooth
potential p(x) was studied in Brownell and Clark [3], and McLeod [4].

Only the theorem and a sketch of its proof are presented here and
the details will be published elsewhere.

2. Main result. Let A(D)=3 ., -n @.D* be an elliptic operator
with constant coefficients defined on R*. We suppose that A(£)>0 and
denote by K(I,a) (1>>0,a>0) the set of functions p(x) which satisfy the
following conditions:

(i) p(@) is decomposed as p(x)=p,(z)+p,(®) ;

(ii) p,(») is a positive smooth function with lim, .. |z[p,(®)=0a;

(iii) p,(x) is a nonnegative function with compact support;

(iv) p,(x) e L,, where p=1if m>n and p>n/m if m<n.

Theorem. Let A be an elliptic operator satisfying the above con-
ditions and suppose that p(x) belongs to K(, a) and that l<m. Then,

2.1 n(r)= (Zn)‘”wﬁa"/ Lpn/m=n/l | o(ym/m=n/l)
n
de .
where w=j — = and S is the surface measure of the n—1
(A +D™ f d

dimensional unit sphere if n>2 and S=2 if n=1.

Remark. Theorem 1 can be extended to the case that A(D) is an
inhomogeneous elliptic operator. The details will be discussed in the
forthcoming paper.

3. Outline of the proof. In Birman [1], it was shown that n(r)
coincides with the number of eigenvalues y less than 1 of the following
eigenvalue problem



