39. A Classification of Compact 3-Manifolds with Infinite Cyclic Fundamental Groups

By Akio KAWAUCHI Department of Mathematics, Kobe University

(Comm. by Kunihiko KODAIRA, M. J. A., March 12, 1974)

I. Results. We consider a compact connected piecewise linear 3manifold M^3 which may be either orientable or non-orientable. If there is a component of the boundary ∂M^3 of M^3 which is homeomorphic to S^2 , we attach a 3-cell to eliminate it. Note that the orientability of the resulting manifold coincides with that of the original one. Thus we assume that the boundary ∂M^3 contains no components which are homeomorphic to S^2 throughout this note. Under this assumption compact 3-manifolds with $\pi_1 = Z, Z$ being an infinite cyclic group will be classified modulo Poincaré Conjecture. The classification implies that such a manifold is essentially the S^2 -bundle over $S^1: S^1 \times S^2$, the twist S^2 -bundle over $S^1: S^1 \times S^2$, the solid torus: $S^1 \times B^2$ or the solid Klein bottle: $S^1 \times B^2$.

First, by using results of H. Kneser [2], J. H. C. Whitehead [8] and J. W. Milnor [3], we shall prove the following:

Theorem 1. If $\partial M^3 = \phi$ and $\pi_1(M^3) = Z$ then M^3 is homeomorphic to the connected sum $(S^1 \times S^2) \# \tilde{S}^3$ or $(S^1 \times S^2) \# \tilde{S}^3$ according as M^3 is orientable or non-orientable, where \tilde{S}^3 is a homotopy 3-sphere.

Next, using Partial Poincaré Duality due to the present author [1], we shall obtain the following:

Theorem 2. If $\partial M^3 \neq \phi$ and $\pi_1(M^3) = Z$ then M^3 is homeomorphic to $(S^1 \times B^2) \# \tilde{S}^3$ or $(S^1 \times B^2) \# \tilde{S}^3$ according as M^3 is orientable or non-orientable. In particular, in case M^3 is orientable, M^3 may be considered as $cl(\tilde{S}^3$ -unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion:

Conclusion. Any compact connected 3-manifold with $\pi_1 = Z$ is homeomorphic to $(S^1 \times S^2) \# \tilde{S}^3$, $(S^1 \times S^2) \# \tilde{S}^3$, $(S^1 \times B^2) \# \tilde{S}^3$ or $(S^1 \times B^2) \# \tilde{S}^3$ with a finite number of open 3-cells removed.

II. Sketch of proofs. Proofs will be considered in the piecewise linear category.

Proof of Theorem 1. By a result of H. Kneser [2], M^3 is homeomorphic to $P \# \tilde{S}^3$, where P is a prime 3-manifold in the sense that if P is homeomorphic to $P_1 \# P_2$ then P_1 or P_2 is a 3-sphere. Since $\pi_1(P) = Z$, from the sphere theorem in the sense of J. H. C. Whitehead [8], we