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Io Results. We consider a compact connected piecewise linear 3-
manifold M which may be either orientable or non-orientable. If
there is a component o the boundary 3M of M which .is homeomorphic
to S, we attach a 3-cell to eliminate it. Note that the orientability
o the resulting manifold coincides with that o the original one. Thus
we assume that the boundary 3M contains no components which are
homeomorphic to S throughout this note. Under this assumption
compact 3-manifolds with z=Z, Z being an infinite cyclic group will
be classified modulo Poincar Conjecture. The classification implies
that such a manifold is essentially the S-bundle over S" S S, the
twist S-bundle over S’" SS, the solid torus" SB or the solid
Klein bottle" S B.

First, by using results of H. Kneser [2], J. H. C. Whitehead [8]
and J. W. Milnor [3], we shall prove the ollowing"

Theorem 1. If M3-- and I(M3)=Z then M is homeomorphic to
the connected sum (St $2)#S or (S :S2)#S according as M is orient-
able or non-orientable, where S is a homotopy 3-sphere.

Next, using Partial Poincar Duality due to the present author [1],
we shall obtain the following"

Theorem 2. If M3:/: and z(M3)--Z then M is homeomorphic to
(SB)S or (S B)S according as M is orientable or non-orient-
able. In particular, in case M is orientable, M may be considered as
cl(S-unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion"
Conclusion. Any compact connected 3-manifold with =Z is

homeomorphic to (S S)#S, (S :S)#S, (S B)#S or (S :B)#S
with a finite number of open 3-cells removed.

II. Sketch of proofs. Proofs will be considered in the piecewise
linear category.

Proof of Theorem 1. By a result o H. Kneser [2], M is homeo-
morphic to PS, where P is a prime 3-manifold in the sense that if P
is homeomorphic to PI#P2 then P or P is a 3-sphere. Since z(P)=Z,
from the sphere theorem in the sense o J. H. C. Whitehead [8], we


