39. A Classification of Compact 3-Manifolds with Infinite Cyclic Fundamental Groups

By Akio Kawauchi
Department of Mathematics, Kobe University
(Comm. by Kunihiko Kodaira, m. J. a., March 12, 1974)

I. Results. We consider a compact connected piecewise linear 3manifold M^{3} which may be either orientable or non-orientable. If there is a component of the boundary ∂M^{3} of M^{3} which is homeomorphic to S^{2}, we attach a 3 -cell to eliminate it. Note that the orientability of the resulting manifold coincides with that of the original one. Thus we assume that the boundary ∂M^{3} contains no components which are homeomorphic to S^{2} throughout this note. Under this assumption compact 3 -manifolds with $\pi_{1}=Z, Z$ being an infinite cyclic group will be classified modulo Poincaré Conjecture. The classification implies that such a manifold is essentially the S^{2}-bundle over $S^{1}: S^{1} \times S^{2}$, the twist S^{2}-bundle over $S^{1}: S^{1} \times{ }_{\tau} S^{2}$, the solid torus: $S^{1} \times B^{2}$ or the solid Klein bottle: $S^{1} \times{ }_{\tau} B^{2}$.

First, by using results of H. Kneser [2], J. H. C. Whitehead [8] and J. W. Milnor [3], we shall prove the following:

Theorem 1. If $\partial M^{3}=\phi$ and $\pi_{1}\left(M^{3}\right)=Z$ then M^{3} is homeomorphic to the connected sum $\left(S^{1} \times S^{2}\right) \# \tilde{S}^{3}$ or $\left(S^{1} \times{ }_{\tau} S^{2}\right) \# \tilde{S}^{3}$ according as M^{3} is orientable or non-orientable, where \tilde{S}^{3} is a homotopy 3-sphere.

Next, using Partial Poincaré Duality due to the present author [1], we shall obtain the following:

Theorem 2. If $\partial M^{3} \neq \phi$ and $\pi_{1}\left(M^{3}\right)=Z$ then M^{3} is homeomorphic to $\left(S^{1} \times B^{2}\right) \# \tilde{S}^{3}$ or $\left(S^{1} \times{ }_{\varepsilon} B^{2}\right) \# \tilde{S}^{3}$ according as M^{3} is orientable or non-orientable. In particular, in case M^{3} is orientable, M^{3} may be considered as $\operatorname{cl}\left(\tilde{S}^{3}\right.$-unknotted solid torus).

From Theorems 1 and 2 we obtain the following Conclusion:
Conclusion. Any compact connected 3-manifold with $\pi_{1}=Z$ is homeomorphic to $\left(S^{1} \times S^{2}\right) \# \tilde{S}^{3},\left(S^{1} \times{ }_{\tau} S^{2}\right) \# \tilde{S}^{3},\left(S^{1} \times B^{2}\right) \# \tilde{S}^{3}$ or $\left(S^{1} \times{ }_{\tau} B^{2}\right) \# \tilde{S}^{3}$ with a finite number of open 3-cells removed.
II. Sketch of proofs. Proofs will be considered in the piecewise linear category.

Proof of Theorem 1. By a result of H. Kneser [2], M^{3} is homeomorphic to $P \# \tilde{S}^{3}$, where P is a prime 3 -manifold in the sense that if P is homeomorphic to $P_{1} \# P_{2}$ then P_{1} or P_{2} is a 3 -sphere. Since $\pi_{1}(P)=Z$, from the sphere theorem in the sense of J. H. C. Whitehead [8], we

