38. On Some New Invariants of Polarized Manifolds

By Takao FuJita
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, M. J. A., March 12, 1974)

In this note we shall announce a couple of theorems on some invariants of polarized manifolds, which will be useful in our study of their structures (see [2]). Details will be published elsewhere.

First we review some results in [1], in which we defined the following three invariants of a polarized manifold, i.e., a pair (M, F) of a compact complex manifold M and an ample line bundle F on M :
$d(M, F)=F^{n}=\left(c_{1}(F)\right)^{n}[M]$, where $n=\operatorname{dim} M$,
$\Delta(M, F)=n+d(M, F)-\operatorname{dim} H^{0}\left(M, \mathcal{O}_{M}(F)\right)$,
$2 g(M, F)-2=\left(K_{M}+(n-1) F^{\prime}\right) F^{n-1}$, where K_{M} is the canonical bundle of M.
We call $\Delta(M, F)$ the 4 -genus of (M, F). Note that if D is a non-singular member of $|F|$, then $d\left(D, F_{D}\right)=d(M, F), g\left(D, F_{D}\right)=g(M, F)$ and $\Delta\left(D, F_{D}\right)$ $\leqq \Delta(M, F)$, where F_{D} is the restriction of F to D. Moreover $\Delta\left(D, F_{D}\right)$ $=\Delta(M, F)$ if $H^{1}\left(M, \mathcal{O}_{M}\right)=0$ or $H^{1}\left(D, \mathcal{O}_{D}\right)=0$. In [1] we established the inequality $\operatorname{dim} B s|F|<\Delta(M, F)$, where $B s|F|$ is the set of the base points of $|F|$. This assured us of the existence of a non-singular member of $|F|$ if $\Delta(M, F)=0$, and enabled us to classify such polarized manifolds.

Now we give a sufficient condition for the existence of a nonsingular member of $|F|$ and state some of its applications.

Theorem I. Let (M, F) be a polarized manifold with $g(M, F)$ $\geqq \Delta(M, F)$ and $\operatorname{dim} B s|F| \leqq 0$. Then $|F|$ has a non-singular member if $d(M, F) \geqq 2 \Delta(M, F)-1$.

Corollary I-1. Suppose, in addition, that $d(M, F) \geqq 2 \Delta(M, F)$. Then $B s|F|=\emptyset$.

Corollary I-2. Suppose, in addition, that $d(M, F) \geqq 2 \Delta(M, F)+1$. Then $g(M, F)=\Delta(M, F)$.

Corollary I-3. Under the same conditions as in Theorem I, let D be a non-singular member of $|F|$. Then $\Delta\left(D, F_{D}\right)=\Delta(M, F)$.

Using these results, we can prove the following theorem by induction on $\operatorname{dim} M$.

Theorem II. Let (M, F) be a polarized manifold with $g(M, F)$ $\geqq \Delta(M, F)$ and $\operatorname{dim} B s|F| \leqq 0$. Then F is very ample if $d(M, F)$ $\geqq 2 \Delta(M, F)+1$.

Remark. When M is a curve, the conditions $g(M, F) \geqq \Delta(M, F)$ and $\operatorname{dim} B s|F| \leqq 0$ are always satisfied if $d(M, F) \geqq 2 \Delta(M, F)-1$. Hence

