60. Elements of Finite Order in an Ordered Semigroup Whose Product is of Infinite Order

By Tôru Saitô

Tokyo Gakugei University

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

We use the terminology and notation in [1] freely. By an ordered semigroup we mean a semigroup with a simple order which is compatible with the semigroup operation. Let a be an element of an ordered semigroup S. a is called *positive* [negative; nonnegative; nonpositive] if $a < a^2$ [$a^2 < a$; $a \le a^2$; $a^2 \le a$]. The number of distinct powers of a is called the order of a. The semigroup S is called nonnegatively ordered if all elements of S are nonnegative.

In [8], we gave the property that the set of all elements of finite order of a nonnegatively ordered semigroup S forms a subsemigroup of S, if it is nonempty. This property does not hold in general in ordered semigroups not necessarily nonnegatively ordered. In fact, Kuroki [2] gave the ordered semigroup K consisting of elements

$$e < x < u_1 < u_2 < \cdots < r_1 < r_2 < \cdots$$

 $<\!g<\!h<\!s_1<\!s_2<\cdots<\!y<\!v_1<\!v_2<\cdots<\!f$

with the multiplication table

	e	x	u_j	r_{j}	g	h	s_{j}	y	v_{j}	f
е	e	e	e	e	e	e	е	e	e	e
x	e	e	e	e	e	e	u_j	r_1	r_{j+1}	g
u_i	e	e	e	e	e	e	u_{i+j}	r_{i+1}	r_{i+j+1}	g
r_i	e	u_i	u_{i+j}	r_{i+j}	g	g	g	g	g	g
g	g	g	g	g	g	g	g	g	g	g
h	h	h	h	h	h	h	h	h	h	h
s_i	h	h	h	h	h	h	s_{i+j}	v_{i}	v_{i+j}	f
y	h	s_1	s_{j+1}	v_{j}	f	f	f	f	f	f
v_i	h	s_{i+1}	s_{i+j+1}	v_{i+j}	f	f	f	f	f	f
f	f	f	f	f	f	f	f	f	f	f

and the ordered semigroup K' arising from K by identifying the elements g and h, as examples of ordered semigroups in which the elements x and y are elements of finite order but the element $r_1 = xy$ is an element of infinite order.

In this paper we consider conversely and prove the following

Theorem. Let x and y be elements of finite order of an ordered semigroup S such that $x \le y$, $xy \le yx$ and xy is a positive element of in-