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We use the terminology and notation in [1] freely. By an ordered
semigroup we mean a semigroup with a simple order which is com-
patible with the semigroup operation. Let o be an element of an
ordered semigroup S. a is called positive [negative ; nonnegative ; non-
positive] if a<a? [0*<a; a<a?; a*<a]. The number of distinct powers
of a is called the order of a. The semigroup S is called nonnegatively
ordered if all elements of S are nonnegative.

In [8], we gave the property that the set of all elements of finite
order of a nonnegatively ordered semigroup S forms a subsemigroup
of S, if it is nonempty. This property does not hold in general in
ordered semigroups not necessarily nonnegatively ordered. In fact,
Kuroki [2] gave the ordered semigroup K consisting of elements

<< U< Uy e <y <, < e

<YG<h<5,<8,< - - <Y<, <0, <+ - < S
with the multiplication table

e x U, r; g h s; Y Vg J
e e e e e e e e e e e
x e e e e e e u; T Ty 9
u, |e e e e e e Uy Tiy Tigga 9
.| € W Uy Ty 909 9 9 g g
g9 9 g9 g9 g g9 9 g 9 ) g
h h h h h h h h h h h
S, h h h h h h Sivy Vi Vg S
vy b s soov, S S
v |h Sun Sugn vy S F  F S S
2 VA A S r 5 5 5 S

and the ordered semigroup K’ arising from K by identifying the ele-
ments g and %, as examples of ordered semigroups in which the ele-
ments x and y are elements of finite order but the element »,=zy is an
element of infinite order.
In this paper we consider conversely and prove the following
Theorem. Let x and y be elements of finite order of an ordered
semigroup S such that x<y, xy<yx and xy is a positive element of in-



