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Elements of Finite Order in an Ordered Semigroup
Whose Product is of Infinite Order
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We use the terminology and notation in [1] freely. By an ordered
semigroup we mean a semigroup with a simple order which is com-
patible with the semigroup operation. Let a be an element of an
ordered semigroup S. a is called positive [negative nonnegative non-
positive] if a a [a a a_< a a

_
a]. The number of distinct powers

of a is called the order of a. The semigroup S is called nonnegatively
ordered if all elements of S are nonnegative.

In [8], we gave the property that the set of all elements of finite
order of a nonnegatively ordered semigroup S forms a subsemigroup
of S, if it is nonempty. This property does not hold in general in
ordered semigroups not necessarily nonnegatively ordered. In fact,
Kuroki [2] gave the ordered semigroup K consisting of elements

exu.u.. rr.
ghss.. yvv. f

with the multiplication table
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e e e e e e ui+ rt+l ri++ g
e u u+ r+j g g g g g g
g g g g g g g g g g
h h h h h h h h h h
h h h h h h st+ v+ f
h sl s+ v f f f f f f
h s+ st+j+ v+ f f f f f f
f f f f f f f f f f

and the ordered semigroup K’ arising rom K by identifying the ele-
ments g and h, as examples o ordered semigroups in which the ele-
ments x and y are elements of finite order but the element r xy is an
element of infinite order.

In this paper we consider conversely and prove the following
Theorem. Let x and y be elements of finite order of an ordered

semigroup S such that x<_y, xy<_ yx and xy is a positive element of in-


