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The Connection between the Order and the Diameter
of a Neighborhood in a Vector Space
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Kobe University

(Comm. by Kinjir6 KUNUGI, M. ft. A., June 11, 1974)

In this paper, we investigate the connection between the order and
the convergence exponent of the diameter of a bounded set in a normed
space. We apply then the obtained results to a locally convex topologi-
cal vector space.

1. Let E be a vector space over the field of real or complex num-
bers and A and B arbitrary sets in E.

For each positive number e, let M(A, B;e) be the supremum of all
natural numbers m, for which there exist elements Xl,. ., x e A with

x--xeB or i:/=] (1=<i, ]<m). Let p(A,B) be the infimum of all
positive numbers p, or which there is a positive number 0 such that
M(A, B;Dexp (e-0 for 0z0. If no number p with the given pro-
perty exists we set p(A, B)= + c, We then call p(A, B) the order of A
with respect to B; as is easily seen, we have

p(A, B) =lira {log log M(A, B; )/log e-}.
The infimum (A, B) of all positive numbers 6, for which there is

a vector subspace F o2 E o2 dimension at most n with VU+F is
called the n-th diameter of A with respect to B.

Let a, a., be a sequence of positive numbers converging to zero.

We call the infimum 2, of those values p or which the series ]__ a
converges, the exponent of convergence of the sequence {l/an}, and we
call the exponent of convergence of the sequence {log a;} the conver-
gence type of the sequence {an}. Let e be a positive number, then we

have the following two lemmas.
Lemma 1. Let be the exponent of convergence of the sequence

{1/a}. Then =lim {log m(D/log -}, where m(D denotes the number
0

of terms of the sequence {a} which are greater than .
For a proof see [1], p. 89.
Lemma 2. Let be the convergence type of the sequence (a}.

Then
r= lira {log m(D/log log -1}.

Proof. Applying Lemma 1 to the sequence {log a;}, we see that

v=li0 {log/(3)/log -} (>0), where l($) is the number of terms of

{log a;} greater than . But obviously l($)=m(e-/O. Therefore


