82. The Connection between the Order and the Diameter of a Neighborhood in a Vector Space

By Masatoshi Nakamura
Kobe University
(Comm. by Kinjirô Kunugı, M. J. A., June 11, 1974)

In this paper, we investigate the connection between the order and the convergence exponent of the diameter of a bounded set in a normed space. We apply then the obtained results to a locally convex topological vector space.

1. Let E be a vector space over the field of real or complex numbers and A and B arbitrary sets in E.

For each positive number ε, let $M(A, B ; \varepsilon)$ be the supremum of all natural numbers m, for which there exist elements $x_{1}, \cdots, x_{m} \in A$ with $x_{i}-x_{j} \notin \varepsilon B$ for $i \neq j(1 \leqq i, j \leqq m)$. Let $\rho(A, B)$ be the infimum of all positive numbers ρ, for which there is a positive number ε_{0} such that $M(A, B ; \varepsilon)<\exp \left(\varepsilon^{-\rho}\right)$ for $0<\varepsilon<\varepsilon_{0}$. If no number ρ with the given property exists we set $\rho(A, B)=+\infty$. We then call $\rho(A, B)$ the order of A with respect to B; as is easily seen, we have

$$
\rho(A, B)=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log \log M(A, B ; \varepsilon) / \log \varepsilon^{-1}\right\} .
$$

The infimum $\delta_{n}(A, B)$ of all positive numbers δ, for which there is a vector subspace F of E of dimension at most n with $V \subset \delta U+F$ is called the n-th diameter of A with respect to B.

Let a_{1}, a_{2}, \cdots be a sequence of positive numbers converging to zero. We call the infimum λ, of those values μ for which the series $\sum_{n=1}^{\infty} a_{n}^{\mu}$ converges, the exponent of convergence of the sequence $\left\{1 / a_{n}\right\}$, and we call the exponent of convergence of the sequence $\left\{\log {a_{n}^{-1}}^{-1}\right.$ the convergence type of the sequence $\left\{a_{n}\right\}$. Let ε be a positive number, then we have the following two lemmas.

Lemma 1. Let λ be the exponent of convergence of the sequence $\left\{1 / a_{n}\right\}$. Then $\lambda=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log m(\varepsilon) / \log \varepsilon^{-1}\right\}$, where $m(\varepsilon)$ denotes the number of terms of the sequence $\left\{a_{n}\right\}$ which are greater than ε.

For a proof see [1], p. 89.
Lemma 2. Let τ be the convergence type of the sequence $\left\{a_{n}\right\}$. Then

$$
\tau=\varlimsup_{\varepsilon \rightarrow 0}\left\{\log m(\varepsilon) / \log \log \varepsilon^{-1}\right\} .
$$

Proof. Applying Lemma 1 to the sequence $\left\{\log {a_{n}^{-1}}^{-1}\right.$, we see that $\tau=\varlimsup_{i \rightarrow 0}\left\{\log l(\delta) / \log \delta^{-1}\right\}(\delta>0)$, where $l(\delta)$ is the number of terms of $\left\{\log {a_{n}^{-1}}^{\prime}\right.$ greater than δ. But obviously $l(\delta)=m\left(e^{-1 / \delta}\right)$. Therefore

