109. Shift Automorphism Groups of von Neumann Algebras

By Marie CHODA

(Comm. by Kinjirô KUNUGI, M. J. A., Sept. 12, 1974)

1. In the structure theory of von Neumann algebras of type III, Connes and Takesaki have treated a group G of automorphisms (*-preserving) of a von Neumann algebra \mathcal{A} with the following property:

(\mathcal{A} admits a faithful semi-finite normal trace φ such that

(*) $\begin{cases} \varphi \cdot g = \lambda_q \varphi & (1) \\ \text{for every non trivial automorphism } g \text{ of } G \text{ and some scalar} \\ 0 < \lambda_q \neq 1 \text{ depending on } g. \end{cases}$

Especially, assume that G is a singly generated automorphism group of an abelian von Neumann algebra \mathcal{A} . It is proved that there exists a projection E of \mathcal{A} such that

 $\{g(E); g \in G\}$ is an orthogonal family (2)

and

$$\sum_{e \in a} g(E) = 1 \tag{3}$$

if G satisfies the property (*).

We have an interest in an automorphism group of a von Neumann algebra with such a projection.

Definition 1. Let G be an automorphism group of a von Neumann algebra \mathcal{A} . If there exists a projection E of \mathcal{A} with (2) and (3), then G is called a *shift* and E is called a *shift projection* of G in \mathcal{A} . Especially, if E is a central projection, then G is called a *central shift*.

In this paper, we shall show, for a singly generated automorphism group, an elementary relation between the property (*) and the notion of shift and prove the following theorem:

Theorem 2. If G is a discrete central shift of automorphisms of a von Neumann algebra \mathcal{A} , then the crossed product of \mathcal{A} by G is isomorphic to the tensor product $\mathcal{A}^{G} \otimes \mathcal{L}(L^{2}(G))$ of the fixed algebra \mathcal{A}^{G} in \mathcal{A} of G and the algebra $\mathcal{L}(L^{2}(G))$ of all bounded operators on $L^{2}(G)$.

2. In order to construct the discrete crossed product of a von Neumann algebra \mathcal{A} by an automorphism group G, freely acting automorphism groups play an important role.

An automorphism g of a von Neumann algebra $\mathcal A$ is called freely acting on $\mathcal A$

when

$$AB = g(B)A$$
 for all B in \mathcal{A}

implies