92. On the Structure of Certain Types of Polarized Varieties. II

By Takao FuJita
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1974)

This is a continuation of our previous notes [1], [2]. We employ the same notation and the same terminology as in them. We shall outline our main results. Details will be published elsewhere.

1. Polarized varieties with $\Delta=0$. Given a pair (x, y) of points on a projective space P, we denote by $l_{x, y}$ the line which passes through the points x and y. Given a pair (X, Y) of subsets of P, we denote by $X^{*} Y$ the subset $\left(\cup_{(x, y) \in X \times Y, x \neq y^{l} x, y}\right) \cup X \cup Y$ of P.

Theorem 1. i) $\operatorname{Let}(V, F)$ be a polarized variety with $\Delta(V, F)=0$. Then V is normal and F is very ample.
ii) Let $\rho: V \rightarrow \boldsymbol{P}^{N}$ be the embedding associated with F, and let S be the set of singular points of V. Then S is a linear subspace of \boldsymbol{P}^{N}.
iii) Let L be a linear subspace of \boldsymbol{P}^{N} such that $\operatorname{dim} L+\operatorname{dim} S=N$ -1 and $L \cap S=\emptyset$. Put $V_{L}=V \cap L$. Then V_{L} is non-singular, $\Delta\left(V_{L}, F\right)$ $=0$ and $V=V_{L}{ }^{*} S$.

Remark. By this theorem the classification of polarized varieties with $\Delta=0$ is reduced to that of non-singular ones. Recall that an enumeration of such polarized manifolds has already been given in [1].
2. Families of polarized varieties with $\Delta=0$. Theorem 2. Let $\pi: \subset V \rightarrow T$ be a proper, flat morphism from a variety V to another variety T, which may not be compact. Suppose that for every $t \in T$ the fiber $V_{t}=\pi^{-1}(t)$ is irreducible and reduced. Let F be a line bundle on $\checkmark \vee$ which is relatively ample to π. Suppose that $\Delta\left(V_{0}, F_{0}\right)=\Delta\left(V_{0}, F_{V_{0}}\right)$ $=0$ for some $0 \in T$. Then $\Delta\left(V_{t}, F_{t}\right)=0$ for any $t \in T$.

Corollary 2.1. Suppose in addition that $d\left(V_{0}, F_{0}\right)=1$. Then $C V$ is a \boldsymbol{P}^{n}-bundle over T.

Corollary 2.2. Suppose in addition that $d\left(V_{0}, F_{0}\right)=2$. Then there exists an embedding $C V \rightarrow \mathcal{P}$ where \mathscr{P} is a P^{n+1}-bundle over T. Moreover \mathcal{C} is a divisor on \mathscr{P} and V_{t} is a quadric in $P_{t} \cong P^{n+1}$ which is the fiber of $\mathcal{P} \rightarrow T$ over $t \in T$.

Corollary 2.3. Suppose in addition that $d\left(V_{0}, F_{0}\right) \geqq 3$, that V_{0} is non-singular and that the canonical bundle of V_{0} is a restriction of a line bundle on $C V$. Then every fiber V_{t} is non-singular. Moreover, except the case in which $C V$ is a \boldsymbol{P}^{2}-bundle over T, there exists a \boldsymbol{P}^{1} -

