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1. As the case of simple rings, it is proved by Nakamura and
Takeda ([6]-[8] and [9]) that a Galois theory holds true for finite factors
under some conditions.

Throughout this paper, denote by a separable Hilbert space, by
a von Neumann algebra acting standardly on , by G a countable

discrete group of outer ,-automorphisms of and by . the fixed
algebra of /under G, that is,

.={A ;g(A)--A for all g e G}.
Let be a II-factor and G an outer automorphism group of .

Then , is called a Galois extension of with the Galois group G if .
satisfies the condition"

(1) The commutant ’ of . is a IIl-factor.
The fundamental theorem ([7, Theorem 2]) of the Galois theory

for finite factors is the ollowing"
Theorem A. If A is a Galois extension of _q with the Galois

group G, then the lattices of all subgroups of G and of all intermediate
subfactors to are dually isomorphic by the usual Galois cor-
respondence.

Furthermore the condition (1) is equivalent to the following con-
dition"

(2) G is finite
([7, Theorem 3]).

The Galois theory for general von Neumaaa algebras is discussed
by Haga and Takeda ([4]) or Henle ([5]).

In this paper, we shall show the following theorem as a comment
of the Galois theory for II-factors.

Theorem 1. Assume that j be a II-factor and G a finite group.
Then the crossed product G(R) of by G is isomorphic to the tensor
product (R).(l(G)) of

_
and the algebra of all bounded linear

operators on the Hilbert space l(G).
Recently, M. Choda in [1] introduced a notion of shift for auto-

morphism groups. Relating to it, we shall characterize the shift for
finite groups of automorphisms.

2. Now, we shall relate briefly as to the crossed product accord-
ing to Haga and Takeda [4].


