141. Conformal Sewings of Slit Regions

By Hisashi Ishida
Kyoto University
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1974)

In this paper we shall consider the Riemann surfaces of infinite genus obtained by conformal sewings of slit regions and state some properties induced from the distribution of the slits. This note is an announcement of the results and the details will be given in another paper together with related topics.

1. Let R be a plane region and β be the boundary of R. Take mutually disjoint slits $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ in R clustering nowhere in R. Denote $G=R-\bigcup_{n} \gamma_{n}$. Now we shall define the conformal sewings. (1) Around each γ_{j}, take a parametric disk U_{j} so that γ_{j} is represented as $\left\{z_{j} ;\left|\operatorname{Re} z_{j}\right| \leqq 1, \operatorname{Im} z_{j}=0\right\}$ by the local parameter z_{j}, denote by γ_{j}^{+}and γ_{j}^{-}, the upper edge and the lower one of γ_{j} respectively, (2) partition $\left\{\gamma_{n}\right\}$ into finite sections $\left(\gamma_{i}\right)_{i \in I_{k}}(k=1,2, \cdots)$ and (3) for each arrangement of elements in every finite section $\left(\gamma_{i}\right)_{i \in I_{k}}$, say $\left(\gamma_{i_{1}}, \gamma_{i_{2}}, \cdots, \gamma_{i_{n(k)}}\right)$, identify γ_{j}^{-}with $\gamma_{j+1}^{+}\left(j=i_{1}, i_{2}, \cdots i_{n(k)-1}\right)$ and $\gamma_{i_{n}(k)}^{-}$with $\gamma_{i_{1}}^{+}(k=1,2, \cdots)$. Then we obtain a Riemann surface $S(G)$ and call such an operation a conformal sewing of G.

Definition. We say that slit region G belongs to class $O_{1}\left(\right.$ resp. $\left.O_{2}\right)$ if $S(G) \in O_{G}$ for any (resp. some) conformal sewing of G.

Then we have,
Proposition 1. There exists a slit region with an infinite number of slits, which belongs to class O_{1}.

Now we introduce two families F^{1} and F^{0} of curves in $G-\bar{G}_{0}$, where G_{0} is a parametric disk in $G . \quad F^{1}$ consists of all c such that c is a finite union of closed Jordan curves in $G-\bar{G}_{0}$ and separates β from ∂G_{0}. While, $c \in F^{0}$ iff c is a finite union of closed curves which are closed or join some γ_{n} with γ_{m} and c separates β from ∂G_{0}. We denote by $\lambda\left(F^{1}\right)$ (resp. $\lambda\left(F^{0}\right)$) the extremal length of F^{1} (resp. F^{0}).

Definition. We say that G is of weak (resp. semiweak) type if $\lambda\left(F^{1}\right)=0$ (resp. $\lambda\left(F^{0}\right)=0$). And we say G is of parabolic type if G has no non-constant $H B$-functions vanishing along $\partial G=\bigcup_{n} \gamma_{n}$.

We can prove by extremal length methods the following inclusion relations:

$$
\begin{aligned}
& \stackrel{O_{1}}{\uparrow} \stackrel{\rightharpoonup}{x} \\
& \text { weak }{ }_{4} O_{2} \rightarrow \text { semiweak } \rightarrow \hat{G} \in O_{G} \rightarrow \text { parabolic }
\end{aligned}
$$

