140. Double Centralizers of Torsionless Modules*'

By Yasutaka Suzuki
Department of Mathematics, Yamagata University
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 12, 1974)

In this note, we make the assumption that a ring has an identity element and modules are unital. For a left R-module ${ }_{R} M$ where R is a ring, $D=\operatorname{End}_{R}\left({ }_{R} M\right)$ is an R-endomorphism ring of ${ }_{R} M$ operating on the side opposite to the scalars. Then ${ }_{R} M$ is considered as an (R, D)bimodule. A D-endomorphism ring $Q=\operatorname{End}_{D}\left(M_{D}\right)$ of M_{D} is called a double centralizer of ${ }_{R} M$.

Definition. Let ${ }_{R} M$ and ${ }_{R} U$ be left R-modules, ${ }_{R} M$ is said to be ${ }_{R} U$-torsionless in case for each non-zero element m of ${ }_{R} M$, there exists an R-homomorphism ϕ of ${ }_{R} M$ into ${ }_{R} U$ such that $(m) \phi \neq 0$.

We say that a left R-module ${ }_{R} M$ is torsionless if ${ }_{R} M$ is ${ }_{R} R$-torsionless and ${ }_{R} N$ is faithful if ${ }_{R} R$ is ${ }_{R} N$-torsionless. Let Q be a double centralizer of a faithful left R-module ${ }_{R} M$, then there exists a canonical ring monomorphism of R into Q, written as $R \hookrightarrow Q$. A faithful left R module ${ }_{R} M$ is said to have the double centralizer property if $R=Q$, where Q is a double centralizer of ${ }_{R} M$.

Definition. A ring R is left $Q F-1$ if every faithful left R-module has the double centralizer property.
$Q F-1$ rings were first described by R. M. Thrall (1948 [4]) and have been examined by many authors. It was proved that the double centralizer of a faithful torsionless left R-module is a rational extension of R_{R}. Furthermore the double centralizer of a dominant left R-module is a maximal right quotient ring of R (see T. Kato [1] and H. Tachikawa [3]). In the section 1, the next theorem is proved.

Theorem. Let R be a ring with minimum condition and U be the intersection of all left faithful two-sided ideals of R. Then U is also a left faithful two-sided ideal of R and the double centralizer of ${ }_{R} U$ is a maximal right quotient ring of R.

In the section 2, we shall prove that for a given faithful left R module ${ }_{R} M,{ }_{R} M$ has the double centralizer property if and only if ${ }_{K} K e$ has the double centralizer property, where

$$
K=\left(\begin{array}{cc}
R & M \\
\operatorname{Hom}_{R}\left({ }_{R} M,{ }_{R} R\right) & \operatorname{End}_{R}\left({ }_{R} M\right)
\end{array}\right) \quad \text { and } \quad e=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \in K
$$

The author would like to express his gratitude to Prof. H. Tachikawa and Dr. T. Kato for useful suggestions and observations.

[^0]
[^0]: *) Dedicated to professor Kiiti Morita on his 60th birthday.

