139. On Characterizations of Spaces with G_i-diagonals

Ву Такеті МІЗОКАМІ

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1974)

A space X is called to have a G_{δ} -diagonal if the diagonal Δ in $X \times X$ is a G_{δ} -set. A space X is called to have a regular G_{δ} -diagonal if Δ is a regular G_{δ} -set, that is, Δ is written by the following:

$$\varDelta = \cap \{U_n / n \in N\} = \cap \{\overline{U}_n / n \in N\},\$$

where U_n 's are open sets containing Δ in $X \times X$ and N denotes the set of all natural numbers. Ceder in [1] characterized a G_i -diagonal as follows:

Lemma 1. A space X has a G_s -diagonal iff (=if and only if) there is a sequence $\{U_n | n \in N\}$ of open coverings of X such that for each point p in X

 $p = \bigcap \{ S(p, \mathcal{U}_n) / n \in N \}.$

According to Zenor's result in [2], a regular $G_{\mathfrak{s}}$ -diagonal is characterized as follows:

Lemma 2. A space X has a regular G_s -diagonal iff there is a sequence $\{U_n/n \in N\}$ of open coverings of X such that if p,q are distinct points in X, then there are an integer n and open sets U and V containing p and q, respectively, such that no member of U_n intersects both U and V.

The object of the present paper is to characterize spaces with G_{s} or regular G_{s} -diagonal by virtue of above lemmas as images of metric
spaces under open mappings with some properties.

Theorem 1. A space X has a $G_{\mathfrak{d}}$ -diagonal iff there is an open mapping (single-valued) f from a metric space T onto X such that

 $d(f^{-1}(p), f^{-1}(q)) > 0$ for distinct points $p, q \in X$.

Proof. Only if part: Define T as follows:

 $T = \{(\alpha_1, \alpha_2, \cdots) \in N(A) / \cap \{U_{\alpha_n}^n / n \in N\} \neq \phi\},\$

where $\{\mathcal{U}_n = \{U_{\alpha}^n | \alpha \in A\} | n \in N\}$ is a sequence of open coverings of X satisfying the condition in Lemma 1. If we define a mapping $f: T \to X$ as follows;

 $f(\alpha) = \cap \{U_{\alpha_n}^n/n \in N\}$ for $\alpha = (\alpha_1, \alpha_2, \dots) \in T$, then f is clearly a single-valued mapping from T onto X. Since $f(N(\alpha_1, \dots, \alpha_n)) = \cap \{U_{\alpha_i}^i/1 \leq i \leq n\},$

it follows that f is open. Let p, q be distinct points in X; then by Lemma 1 we admit an integer n in N such that q does not belong to $S(p, U_n)$. In this case it is proved that