139. On Characterizations of Spaces with G_{o}-diagonals

By Takemi Mizokami
(Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1974)

A space X is called to have a G_{δ}-diagonal if the diagonal Δ in $X \times X$ is a $G_{\dot{j}}$-set. A space X is called to have a regular $G_{\dot{j}}$-diagonal if Δ is a regular $G_{\dot{\delta}}$-set, that is, Δ is written by the following:

$$
\Delta=\cap\left\{U_{n} / n \in N\right\}=\cap\left\{\bar{U}_{n} / n \in N\right\}
$$

where U_{n} 's are open sets containing Δ in $X \times X$ and N denotes the set of all natural numbers. Ceder in [1] characterized a G_{0}-diagonal as follows:

Lemma 1. A space X has a $G_{\dot{j}}$-diagonal iff (=if and only if) there is a sequence $\left\{Ч_{n} / n \in N\right\}$ of open coverings of X such that for each point p in X

$$
p=\cap\left\{S\left(p, \bigcup_{n}\right) / n \in N\right\}
$$

According to Zenor's result in [2], a regular G_{δ}-diagonal is characterized as follows :

Lemma 2. A space X has a regular G_{δ}-diagonal iff there is a sequence $\left\{U_{n} / n \in N\right\}$ of open coverings of X such that if p, q are distinct points in X, then there are an integer n and open sets U and V containing p and q, respectively, such that no member of \mathcal{U}_{n} intersects both U and V.

The object of the present paper is to characterize spaces with $G_{8}-$ or regular G_{i}-diagonal by virtue of above lemmas as images of metric spaces under open mappings with some properties.

Theorem 1. A space X has a $G_{\dot{\delta}}$-diagonal iff there is an open mapping (single-valued) from a metric space T onto X such that $d\left(f^{-1}(p), f^{-1}(q)\right)>0$ for distinct points $p, q \in X$.
Proof. Only if part: Define T as follows:

$$
T=\left\{\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in N(A) / \cap\left\{U_{\alpha_{n}}^{n} / n \in N\right\} \neq \phi\right\}
$$

where $\left\{U_{n}=\left\{U_{\alpha}^{n} / \alpha \in A\right\} / n \in N\right\}$ is a sequence of open coverings of X satisfying the condition in Lemma 1. If we define a mapping $f: T \rightarrow X$ as follows;

$$
f(\alpha)=\cap\left\{U_{\alpha_{n}}^{n} / n \in N\right\} \quad \text { for } \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right) \in T
$$

then f is clearly a single-valued mapping from T onto X. Since

$$
f\left(N\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right)=\cap\left\{U_{\alpha_{i}}^{i} / 1 \leqq i \leqq n\right\}
$$

it follows that f is open. Let p, q be distinct points in X; then by Lemma 1 we admit an integer n in N such that q does not belong to $S\left(p, \bigcup_{n}\right)$. In this case it is proved that

