137. On Isolated Components of Elements in a Compactly Generated l-Semigroup

By Derbiau F. Hsu*)
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

Recently, Murata and Hsu [2], [3] have presented analogous results of [4] for elements of an l-semigroup with a compact generator system. In [1] by defining an isolated component, authors have done a continued work of [4] to investigate the ideals which can be represented as the intersection of a finite number of f-primary ideals. The purpose of this note is to generalize results in [1] to elements in a compactly generated l-semigroup with a compact generator system.

Let L be a $c l$-semigroup with the following conditions as same as in [2], [3]:
(α) If M is a φ-system with kernel M^{*}, and if for any element a of L, M meets $\Sigma(\alpha)$, then M^{*} meets $\Sigma(\alpha)$.
(β) For any φ-primary element q of $L, q: q=e$. Moreover, if for any φ-system $M, \Sigma(r(q))$ meets M, then $\Sigma(q)$ meets M.

Throughout this note, we shall denote $r(a)$ as the φ-radical of an element a of L. Other terms are as same as in [2], [3].

1. Isolated components. Definition 1.1. Let a be an element of L and M be a φ-system. The isolated component $a(M)$ of a determined by M will be defined as the supremum of all $\{a: m\}, m$ runs over M, when M is not empty. $a(M)$ is defined to be a, when M is empty.

As in [3], we have assumed that there is such element x for any $a \in L$ and any $u \in \Sigma$ with $\varphi(u) \varphi(x) \leqslant a, x \in \Sigma$. Then there exists such element $\alpha: m$ in L and it can be seen from (3.2) in [3] that $\alpha \leqslant \alpha(M)$.

Lemma 1.2. Let M^{*} be any kernel of a φ-system M. If $x \in \Sigma(a(M))$, there exists an element m^{*} of M^{*} such that $\varphi\left(m^{*}\right) \varphi(x)$ is less than a.

Proof. Since $x \in \Sigma(a(M))$, we have $x \leq a(M)=\sup \left\{\underset{m \in M}{\bigvee} N_{m}\right\}$, when M is not empty (if M is empty, it is trivial), where N_{m} is the set of the compact elements u 's such that $\varphi(m) \varphi(u) \leqslant a$, and \vee denotes the settheoretic union. Then we can find a finite number of elements x_{i} of $\bigvee_{m \in M} N_{m}$ such that $x \leq \bigcup_{i=1}^{n} x_{i}$. Suppose that $x_{i} \in N_{m_{i}}$, then $\varphi\left(m_{i}\right) \varphi\left(x_{i}\right) \leq a$, $x \leqq \bigcup_{i=1}^{n} x_{i} \leqq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right), \varphi(x) \leqq \bigcup_{i=1}^{n} \varphi\left(x_{i}\right)$. Moreover, we can find m_{i}^{*} of M^{*}

[^0]
[^0]: *) Department of Mathematics, National Central University, Chung-Li, Taiwan.

