137. On Isolated Components of Elements in a Compactly Generated I-Semigroup

By Derbiau F. Hsu*)

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

Recently, Murata and Hsu [2], [3] have presented analogous results of [4] for elements of an *l*-semigroup with a compact generator system. In [1] by defining an isolated component, authors have done a continued work of [4] to investigate the ideals which can be represented as the intersection of a finite number of f-primary ideals. The purpose of this note is to generalize results in [1] to elements in a compactly generated *l*-semigroup with a compact generator system.

Let L be a *cl*-semigroup with the following conditions as same as in [2], [3]:

(a) If M is a φ -system with kernel M^* , and if for any element a of L, M meets $\Sigma(a)$, then M^* meets $\Sigma(a)$.

(β) For any φ -primary element q of L, q:q=e. Moreover, if for any φ -system M, $\Sigma(r(q))$ meets M, then $\Sigma(q)$ meets M.

Throughout this note, we shall denote r(a) as the φ -radical of an element a of L. Other terms are as same as in [2], [3].

1. Isolated components. Definition 1.1. Let a be an element of L and M be a φ -system. The isolated component a(M) of a determined by M will be defined as the supremum of all $\{a:m\}, m$ runs over M, when M is not empty. a(M) is defined to be a, when M is empty.

As in [3], we have assumed that there is such element x for any $a \in L$ and any $u \in \Sigma$ with $\varphi(u)\varphi(x) \leq a, x \in \Sigma$. Then there exists such element a : m in L and it can be seen from (3.2) in [3] that $a \leq a(M)$.

Lemma 1.2. Let M^* be any kernel of a φ -system M. If $x \in \Sigma(a(M))$, there exists an element m^* of M^* such that $\varphi(m^*)\varphi(x)$ is less than a.

Proof. Since $x \in \Sigma(a(M))$, we have $x \leq a(M) = \sup\left\{\bigvee_{m \in M} N_m\right\}$, when M is not empty (if M is empty, it is trivial), where N_m is the set of the compact elements u's such that $\varphi(m)\varphi(u) \leq a$, and \bigvee denotes the set-theoretic union. Then we can find a finite number of elements x_i of $\bigvee_{m \in M} N_m$ such that $x \leq \bigcup_{i=1}^n x_i$. Suppose that $x_i \in N_{m_i}$, then $\varphi(m_i)\varphi(x_i) \leq a$, $x \leq \bigcup_{i=1}^n x_i \leq \bigcup_{i=1}^n \varphi(x_i), \ \varphi(x) \leq \bigcup_{i=1}^n \varphi(x_i)$. Moreover, we can find m_i^* of M^*

^{*)} Department of Mathematics, National Central University, Chung-Li, Taiwan.