136. Projective Modules and 3-fold Torsion Theories

By Yoshiki Kurata, Hisao Katayama, and Mamoru Kutami
Department of Mathematics, Yamaguchi University

(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

Let R be a ring with identity and R-mod the category of unital left R-modules. A 3 -fold torsion theory for R-mod is a triple ($\mathfrak{K}_{1}, \mathfrak{I}_{2}, \mathfrak{T}_{3}$) of classes of left R-modules such that both $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and ($\left.\mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ are torsion theories for R-mod in the sense of Dickson [2]. A class \mathfrak{I}_{2} for which there exist classes \mathfrak{I}_{1} and \mathfrak{I}_{3} such that $\left(\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}\right)$ is a 3 -fold torsion theory for R-mod will be called a TTF-class following Jans [3]. In this case, \mathscr{I}_{1}-torsion submodule $t_{1}(M)$ and \mathscr{I}_{2}-torsion submodule $t_{2}(M)$ coincide with $t_{1}(R) \cdot M$ and $r_{M}\left(t_{1}(R)\right)$ respectively for any left R-module M (cf. [4, Lemma 2.1]), where $r_{M}(*)$ denotes the right annihilator of $*$ in M.

An idempotent two-sided ideal I of R determines three classes of left R-modules

$$
\begin{aligned}
& \mathfrak{S}_{I}=\left\{{ }_{R} M \mid I M=M\right\}, \\
& \mathfrak{T}_{I}=\left\{{ }_{R} M \mid I M=0\right\}
\end{aligned}
$$

and

$$
\mathfrak{\mho}_{I}=\left\{{ }_{R} M \mid r_{M}(I)=0\right\},
$$

and $\left(\mathfrak{C}_{I}, \mathfrak{T}_{I}, \mathfrak{\mho}_{I}\right)$ is then a 3 -fold torsion theory for R-mod. In this case, the \mathfrak{C}_{I}-torsion submodule and \mathfrak{I}_{I}-torsion submodule of a left R-module M coincide with $I M$ and $r_{M}(I)$ respectively.

Recently, in his paper [1], Azumaya has proved that, among other things, for a 3 -fold torsion theory $\left(\mathfrak{C}_{I}, \mathfrak{\mho}_{I}, \mathfrak{C}_{I}\right)$ determined by the trace ideal I of a projective R-module P, a necessary and sufficient condition for \mathfrak{C}_{I} to be a TTF-class is that ${ }_{R / l_{R}(I)} P$ is a generator for $R / l_{R}(I)$-mod. In this note we shall give a similar condition for \dddot{F}_{I} to be a TTF-class and look at the result due to Azumaya again from our point of view. Throughout this note, R-modules will mean left R-modules and $l(*)(r(*))$ will denote the left (right) annihilator for $*$ in R.

We shall begin with a lemma which is in need of later discussions.
Lemma 1. Let I be a left ideal and K a right ideal in R. Then the following conditions are equivalent:
(1) $I+K=R$.
(2) For any R-module $M, I M=0$ implies that $K M=M$.

If this is the case and if we assume moreover that $I K=0$, then
(3) both I and K are idempotent two-sided ideals of R and $I=l(K)$ and $K=r(I)$, and

