134. On Submodules over an Asano Order of a Ring^{*}

By Kentaro MURATA

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. Let R be a ring with unity quantity, and let o be a regular maximal order of R. The term *ideal* means a non-zero fractional twosided o-ideal in R. We shall use small German letters a, b, c with or without suffices to denote ideals in R. The inverse of an ideal α will be denoted by a^{-1} , and a^* will denote a^{-1-1} . Two ideals a and b are said to be quasi-equal if $a^{-1} = b^{-1}$; in symbol: $a \sim b$. The term submodule means a two-sided o-submodule which contains at least one regular element of R. A submodule M is said to be *closed* if whenever $\mathfrak{a} \subseteq M$ implies $\alpha^* \subseteq M$. It is then clear that every submodule is closed when the arithmetic holds for o (cf. [1, § 2]). For any two closed submodules M_1 and M_2 we define a product $M_1 \circ M_2$ to be the set-theoretical union of all ideals $(\sum_{i=1}^{n} a_i b_i)^*$ where $a_i \subseteq M_1$ and $b_i \subseteq M_2$ $(i=1, \dots, n)$. Now the set G of all ideals a such that $a = a^*$ forms a *commutative* group under the multiplication " \circ " defined by $a \circ b = (ab)^* = (a^*b^*)^*$; because G is a (conditionally) complete *l*-group under the above multiplication and the inclusion (cf. p. 91 in [5]). Hence $M_1 \circ M_2 = M_2 \circ M_1$, and if the ascending chain condition in the sense of quasi-equality holds for integral ideals, the set \mathfrak{M} of all closed submodules forms a commutative *l*-semigroup under the above multiplication and the set-inclusion (cf. Lemmas 5.1 and 5.2 in [2]).

Let \mathfrak{P} be the set of all prime ideals which are not quasi-equal to \mathfrak{o} , let $|\mathfrak{P}|$ be the cardinal number of \mathfrak{P} , and let $\mathbb{Z}_{-\infty}$ be the set-theoretical union of the rational integers \mathbb{Z} and $-\infty$. Then the complete direct sum $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$ ($|\mathfrak{P}|$ -copies) of $\mathbb{Z}_{-\infty}$ is an *l*-semigroup under the addition $[m_{\mathfrak{p}}] + [n_{\mathfrak{p}}] = [m_{\mathfrak{p}} + n_{\mathfrak{p}}]$ and the partial order $[m_{\mathfrak{p}}] > [n_{\mathfrak{p}}] \Leftrightarrow m_{\mathfrak{p}} \le n_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathfrak{P}$, where $m_{\mathfrak{p}}, n_{\mathfrak{p}} \in \mathbb{Z}_{-\infty}$. Let $\bigoplus_{\mathfrak{P}}^* \mathbb{Z}_{-\infty}$ be the set of all vectors $[m_{\mathfrak{p}}]$ such that $m_{\mathfrak{p}} \le 0$ for almost all $\mathfrak{p} \in \mathfrak{P}$. Then it forms an *l*-subsemigroup of $\bigoplus_{\mathfrak{P}} \mathbb{Z}_{-\infty}$.

The aim of the present note is to prove the following

Theorem. If the ascending chain condition in the sense of quasiequality (cf. p. 109 in [1]) holds for integral ideals, the l-semigroup \mathfrak{M} of all non-zero closed submodules is isomorphic to $\bigoplus_{\#}^{*} \mathbb{Z}_{-\infty}$ as an l-semigroup. If in particular the arithmetic holds for $\mathfrak{0}$, the l-semigroup \mathfrak{M} of all submodules (containing regular elements) is isomorphic to $\bigoplus_{\#}^{*} \mathbb{Z}_{-}$ as an l-semigroup, and every submodule $M \in \mathfrak{M}$ is written as follows:

^{*)} Dedicated to professor Kiiti Morita on his 60th birthday.