No. 8]

125. Structure of Cohomology Groups Whose Coefficients are Microfunction Solution Sheaves of Systems of Pseudo-Differential Equations with Multiple Characteristics. II

By Masaki KASHIWARA,*' Takahiro KAWAI,**' and Toshio OSHIMA***'

(Comm. by Kôsaku Yosida, M. J. A., Oct. 12, 1974)

This is a continuation of our preceding note Kashiwara-Kawai-Oshima [1], hereafter referred to as K-K-O [1]. The purpose of this note is to investigate the structure of cohomology groups whose coefficients are microfunction solution sheaf of a system \mathcal{M} of pseudo-differential equations which satisfies conditions (2) ~ (8) in K-K-O [1], but does not necessarily satisfy condition (9) in general. The details of this note will appear elsewhere.

In this note we use the same notations as in K-K-O [1]. For example, W denotes the real locus of $V_1 \cap V_1^c = V_2 \cap V_2^c$. Since W acquires canonically the structure of a purely imaginary contact manifold by condition (6) in K-K-O [1], sheaf \mathcal{C}_W of microfunctions and sheaf \mathcal{P}_W of pseudo-differential operators can be defined on W.

When $\kappa = \frac{\sigma(Q)}{\{\sigma(P_2), \sigma(P_1)\}}\Big|_{V_1 \cap V_2}$ takes an integral value, the structure

of κ plays an important role in calculating the cohomology groups. So we give the following preparatory consideration concerning lower order terms.

Let R be a pseudo-differential operator on W whose principal symbol is κ . Such a pseudo-differential operator R is uniquely determined up to inner automorphism of \mathcal{P}_W by condition (5) in K-K-O [1]. (See Theorem 2.1.2 in Chap. II of Sato-Kawai-Kashiwara [2].) Taking account of this fact, we denote by \mathcal{L}_l the pseudo-differential equation (R-l)u=0 on W for $l \in \mathbb{Z}$.

In order to calculate the cohomology groups when κ takes an integral value, we should study in the following four cases classified according to the signatures of the generalized Levi forms of V_1, V_2 and $T_{V_1}^*X^c \cap T_{V_2}^*X^c$. We denote by L_j the generalized Levi form of V_j (j=1,2, respectively) and by L the hermitian form $\{\xi, \overline{\eta}\}$ on $(T_{V_1}^*X^c)_{x^*} \cap (T_{V_2}^*X^c)_{x^*}$.

^{*)} Mathematical Institute, Nagoya University.

^{**)} Research Institute for Mathematical Sciences, Kyoto University.

^{***)} Department of Mathematics, University of Tokyo.