166. Note on Approximation of Nonlinear Semigroups

By Kazuo Kobayasi

Department of Mathematics, Waseda University, Tokyo

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1974)

Let X be a Banach space with a norm $|\cdot|$, and let $\{T(t); t \ge 0\}$ be a contraction (nonlinear) semigroup on a closed convex subset C of X, namely a family of operators from C into C satisfying the following conditions:

- (i) T(0)=I (the identity), T(t+s)=T(t)T(s) for $t,s\geq 0$;
- (ii) $|T(t)x-T(t)y| \leq |x-y|$ for $t \geq 0$ and $x, y \in C$;
- (iii) $\lim_{t\to 0} T(t)x = x$ for $x \in C$.

For each λ , h>0 we define

$$A_h = h^{-1}(T(h) - I)$$
 and $J_{\lambda,h} = (I - \lambda A_h)^{-1}$.

It is well known that $J_{\lambda,h}$ is a contraction operator from C into C and that A_h generates a unique contraction semigroup $\{T_h(t); t \ge 0\}$ on C such that $(d/dt)T_h(t)x=A_hT_h(t)x$ for $x \in C$ and $t \ge 0$ (e.g. see [1] and [3]). The purpose of the present note is to prove the following

Theorem. For each $x \in C$, we have

(a) $T(t)x = \lim_{h \downarrow 0} T_h(t)x$

uniformly on every bounded interval of $[0, \infty)$,

(b) $T(t)x = \lim_{h \to 0} \{(1-t)I + tT(h)\}^{[1/h]}x$

uniformly in $t \in [0, 1]$, and

(c)
$$T(t)x = \lim_{(\lambda,h)\to(0,0)} (I - \lambda A_h)^{-[t/\lambda]}x$$

uniformly on every bounded interval of $[0, \infty)$, where $[\]$ denotes the Gaussian bracket.

Remark. These results were obtained for $x \in \overline{E}$ by I. Miyadera [3], where $E = \{x \in C : |A_h x| = O(1) \text{ as } h \downarrow 0\}$. Recently Y. Kobayashi [2] showed that (a) holds true for $x \in C$ by using an advanced convergence theorem.

We now set for t>0 and $x \in C$

$$\gamma(t) = 8 \cdot \sup \{ |T(\eta)x - x|; 0 \le \eta \le t \}.$$

Clearly $\gamma(t)$ is non-decreasing and $\gamma(t) \downarrow 0$ as $t \downarrow 0$ by (iii). The following lemma is in Crandall-Liggett [1; Lemma 3.3].

Lemma. For $x \in C$ and $\delta > 0$

$$|J_{\lambda,h}x-x| \leq \gamma(2\delta)$$
 if $\lambda, h < \delta$.

To prove Theorem we start from the following inequalities which are found in [3; (3.4), (3.6) and one in p. 257]: