165. On Approximation of Nonlinear Semi-groups

By Yoshikazu Kobayashi

Department of Mathematics, Waseda University

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 12, 1974)

1. Let X be a real Banach space and let X_0 be a subset of X. By a contraction semi-group on X_0 , we mean a family $\{T(t); t \ge 0\}$ of operators from X_0 into itself satisfying the following conditions:

(i) T(0)=I (the identity), T(t+s)=T(t)T(s) for $t,s\geq 0$;

(ii) $||T(t)x-T(t)y|| \le ||x-y||$ for $t \ge 0$ and $x, y \in X_0$;

(iii) $\lim_{t\to 0+} T(t)x = x$ for $x \in X_0$.

We define the *infinitesimal generator* A_0 of $\{T(t); t \ge 0\}$ by $A_0x = \lim_{h \to 0^+} h^{-1}(T(h)x - x)$, whenever the right side exists.

Throughout this paper, we assume that X_0 is a closed convex set in X and $\{T(t); t \ge 0\}$ is a contraction semi-group on X_0 . Let us set (1.1) $A_h = h^{-1}(T(h) - I)$ for $h \ge 0$. Then, for each h, there is the unique contraction semi-group $\{T_h(t); t\ge 0\}$ on X_0 , with the infinitesimal generator A_h , and it satisfies (1.2) $(d/dt)T_h(t)x = A_hT_h(t)x$ for $x \in X_0$ and $t\ge 0$.

(See Appendix in [10].)

Our purpose is to prove the following theorem.

Theorem. For each $x \in X_0$, we have

(1.3) $T(t)x = \lim_{h \to 0+} T_h(t)x$ for $t \ge 0$, and the convergence is uniform with respect to t in every bounded interval of $[0, \infty)$.

Remarks. 1) I. Miyadera showed in [9] that the convergence (1.3) holds true for $x \in \overline{E}$, where E is the set of $x \in X_0$ such that $||A_h x||$ is bounded as $h \rightarrow 0+$. Under the similar conditions, many authors have also treated the convergence (1.3). (See [2], [4], [8] and [10].)

2) This theorem is well known in linear theory. (See [5].)

2. For the proof of Theorem, we shall prepare several lemmas in this section. The following is known.

Lemma 1. Let $x \in X_0$ and h > 0. Then for t > 0,

 $(2.1) ||A_h T_h(t)x|| \le ||A_h x||,$

(2.2) $||T_{h}(t)x - x|| \le t ||A_{h}x||.$

Let F be the duality map on X into X^{*} and we set $\langle x, y \rangle_s$ = sup { $\langle x, f \rangle$; $f \in F(y)$ } for $x, y \in X$.

Lemma 2. Let $x, z \in X_0$, $h \ge 0$ and n be a positive integer. Then we have

(2.3)
$$||z-x||^2 \ge ||T(nh)z-x||^2 + 2\sum_{i=1}^n h\langle -A_hx, T(ih)z-x\rangle_s.$$