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1. Let X be a real Banach space and let X, be a subset of X. By
a contraction semi-group on X,, we mean a family {T'(¥) ; £>0} of oper-
ators from X, into itself satisfying the following conditions:

(i) T@©)=I (the identity), T'(t+s)=T(t)T(s) for t,s>0;

(ii) [[T@z—T@y|<L|z—y] for t>0 and z,y € X,;

(i) lim, ., T(H)x==z for x ¢ X,.

We define the infinitesimal gemerator A, of {T(?);t>0} by Az
=lim,_,, h~'(T(h)x—x), whenever the right side exists.

Throughout this paper, we assume that X, is a closed convex set
in X and {T'(?); t>0} is a contraction semi-group on X,. Let us set
1.1 A,=h " (T(h)-I) for n>0.

Then, for each h, there is the unique contraction semi-group {T',(¢) ; t >0}
on X,, with the infinitesimal generator 4,, and it satisfies

1.2) @/dT,(x=A,T, )z for z ¢ X, and ¢>0.

(See Appendix in [10].)

Our purpose is to prove the following theorem.

Theorem. For each x ¢ X,, we have
1.3) Tr=lim,_,, T,(O)x for t>0,
and the convergence is uniform with respect to t in every bounded
interval of [0, co).

Remarks. 1) I. Miyadera showed in [9] that the convergence
(1.3) holds true for x ¢ E, where E is the set of x ¢ X, such that ||A,z|
is bounded as h—04. TUnder the similar conditions, many authors
have also treated the convergence (1.3). (See [2],[4], [8] and [10].)

2) This theorem is well known in linear theory. (See [5].)

2. For the proof of Theorem, we shall prepare several lemmas in
this section. The following is known.

Lemma 1. Let xec X, and h>0. Then for t>0,

@1 AT <||Arz,
2.2) 1 Th®z—2|| <t Ayl

Let F' be the duality map on X into X* and we set <(=,¥),
=sup{<{®, />; f e F()} for z,y e X.

Lemma 2. Let z,ze X,, h>0 and n be o positive integer. Then
we have
2.8) lz—2|F > T(mh)z—2|P+2 37, h{— Az, T(R)2— ),



