164. Defect Relations and Ramification

By Fumio SAKAI

Department of Mathematics, Kochi University

(Comm. by Kunihiko KODAIRA, M. J. A., Nov. 12, 1974)

In this paper we generalize the theory of ramified values in the Nevanlinna theory ([4], [7]) to the case of equidimensional holomorphic maps from C^n into projective algebraic manifolds and we prove variants of a defect relation of Carlson and Griffiths [1]. (See also [3], [9].)

1. Let W be a projective algebraic manifold of dimension n and L a line bundle on W. Iitaka [5] defined the L-dimension κ (L, W) of W, which is roughly the polynomial order of dim $H^0(W, \mathcal{O}(mL))$ as a function of m, as follows. If there is a positive integer m_0 such that dim $H^0(W, \mathcal{O}(m_0L)) > 0$, we have the following estimate:

 $\alpha m^* \leq \dim H^0(W, \mathcal{O}(mm_0L)) \leq \beta m^*,$

for large integer *m* and positive constants α , β , where κ is a non-negative integer uniquely determined by *L*. Then we define $\kappa(L, W) = \kappa$. In the other case, we put $\kappa(L, W) = -\infty$. In particular, $\kappa(L, W) = n$ if and only if

 $\limsup m^{-n} \dim H^{\scriptscriptstyle 0}(W, \mathcal{O}(mL)) \! > \! 0.$

For a divisor D on W, denote by [D] the line bundle associated with D. Define $\kappa(D, W) = \kappa([D], W)$. By $L_1 + \cdots + L_k$, we mean the tensor product $L_1 \otimes \cdots \otimes L_k$ of line bundles L_1, \cdots, L_k . Moreover we shall consider linear combinations of line bundles: $L = q_1L_1 + \cdots + q_kL_k$, with rational numbers q_1, \cdots, q_k . Define $\kappa(L, W)$ to be $\kappa(mL, W)$ for any positive integer m such that each mq_i is an integer.

2. We shall consider holomorphic maps $f: \mathbb{C}^n \to W$, and assume that f is non-degenerate, i.e., the Jacobian J_f of f does not vanish identically. Let D be an effective divisor on W. Denote by Supp (f^*D) the support of the divisor f^*D . Namely, if $f^*D = \sum_s m_s Z_s$, with Z_s irreducible, we put $\operatorname{Supp}(f^*D) = \sum_s Z_s$. Let (z_1, \dots, z_n) be holomorphic coordinates in \mathbb{C}^n , and let B[r] denote a ball of radius $r: B[r] = \{z \in \mathbb{C}^n \mid ||z|| \le r\}$, where $||z||^2 = |z_1|^2 + \dots + |z_n|^2$. For a set X in \mathbb{C}^n , let $X[r] = X \cap B[r]$. We use the following notations:

$$\psi = (2\pi)^{-1}\sqrt{-1}\partial\bar{\partial}\log||z||^2,$$

$$N(D,r) = \int_0^r \left(\int_{f^*D[t]} \psi^{n-1}\right) t^{-1}dt,$$

$$\bar{N}(D,r) = \int_0^r \left(\int_{\mathrm{Supp}(f^*D)[t]} \psi^{n-1}\right) t^{-1}dt,$$

No. 9]