164. Defect Relations and Ramification

By Fumio Sakai
Department of Mathematics, Kochi University
(Comm. by Kunihiko Kodaira, m. J. a., Nov. 12, 1974)

In this paper we generalize the theory of ramified values in the Nevanlinna theory ([4], [7]) to the case of equidimensional holomorphic maps from C^{n} into projective algebraic manifolds and we prove variants of a defect relation of Carlson and Griffiths [1]. (See also [3], [9].)

1. Let W be a projective algebraic manifold of dimension n and L a line bundle on W. Iitaka [5] defined the L-dimension $\kappa(L, W)$ of W, which is roughly the polynomial order of $\operatorname{dim} H^{0}(W, \mathcal{O}(m L))$ as a function of m, as follows. If there is a positive integer m_{0} such that $\operatorname{dim} H^{0}\left(W, \mathcal{O}\left(m_{0} L\right)\right)>0$, we have the following estimate:

$$
\alpha m^{\star} \leqq \operatorname{dim} H^{0}\left(W, \mathcal{O}\left(m m_{0} L\right)\right) \leqq \beta m^{\star}
$$

for large integer m and positive constants α, β, where κ is a non-negative integer uniquely determined by L. Then we define $\kappa(L, W)=\kappa$. In the other case, we put $\kappa(L, W)=-\infty$. In particular, $\kappa(L, W)=n$ if and only if

$$
\limsup _{m \rightarrow+\infty} m^{-n} \operatorname{dim} H^{0}(W, \mathcal{O}(m L))>0 .
$$

For a divisor D on W, denote by $[D]$ the line bundle associated with D. Define $\kappa(D, W)=\kappa([D], W)$. By $L_{1}+\cdots+L_{k}$, we mean the tensor product $L_{1} \otimes \cdots \otimes L_{k}$ of line bundles L_{1}, \cdots, L_{k}. Moreover we shall consider linear combinations of line bundles: $L=q_{1} L_{1}+\cdots+q_{k} L_{k}$, with rational numbers q_{1}, \cdots, q_{k}. Define $\kappa(L, W)$ to be $\kappa(m L, W)$ for any positive integer m such that each $m q_{i}$ is an integer.
2. We shall consider holomorphic maps $f: C^{n} \rightarrow W$, and assume that f is non-degenerate, i.e., the Jacobian J_{f} of f does not vanish identically. Let D be an effective divisor on W. Denote by $\operatorname{Supp}\left(f^{*} D\right)$ the support of the divisor $f^{*} D$. Namely, if $f^{*} D=\sum_{s} m_{s} Z_{s}$, with Z_{s} irreducible, we put $\operatorname{Supp}\left(f^{*} D\right)=\sum_{s} Z_{s}$. Let $\left(z_{1}, \cdots, z_{n}\right)$ be holomorphic coordinates in C^{n}, and let $B[r]$ denote a ball of radius $r: B[r]=\left\{z \in C^{n} \mid\|z\|<r\right\}$, where $\|z\|^{2}=\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}$. For a set X in C^{n}, let $X[r]=X \cap B[r]$. We use the following notations:

$$
\begin{gathered}
\psi=(2 \pi)^{-1} \sqrt{-1} \partial \bar{\partial} \log \|z\|^{2}, \\
N(D, r)=\int_{0}^{r}\left(\int_{f^{*} D[t]} \psi^{n-1}\right) t^{-1} d t, \\
\bar{N}(D, r)=\int_{0}^{r}\left(\int_{\operatorname{Supp}\left(f^{*}\right)(t t]} \psi^{n-1}\right) t^{-1} d t,
\end{gathered}
$$

