163. Kummer Surfaces in Characteristic 2

By Tetsuji Shioda
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Nov. 12, 1974)

§ 0. Introduction. Let A be an abelian surface (i.e. abelian variety of dim 2) defined over a field of characteristic p ($p=0$ or a prime number). Denoting by c the inversion of $A(\iota(u)=-u, u \in A)$, we consider the quotient surface A / ι, which has only isolated singularities corresponding to the points of order 2 of A. When $p \neq 2, A / \iota$ has 16 ordinary double points and by blowing up these points, we get a $K 3$ surface (i.e. regular surface with a trivial canonical divisor), called the Kummer surface of A.

When $p=2$, the situation is a little different. The number of singular points of A / \subset is smaller (4,2 or 1), but they are more complicated singularities. In this note, we consider the case where $A=E \times E^{\prime}$ is a product of elliptic curves, and instead of directly looking at the singularities of A / c and their resolution, we study the non-singular elliptic surface (Kodaira-Néron model) of the fibration $A / \iota \rightarrow E / \iota=P^{1}$, induced by the projection $A \rightarrow E$. We define the Kummer surface of A, $K m(A)$, to be this non-singular elliptic surface, birationally equivalent to A / ι. Rather unexpectedly, we have

Proposition 1. Assume $p=2$ and let $A=E \times E^{\prime}$. Then
(i) $K m(A)$ (and hence A / ι) is a rational surface, if E and E^{\prime} are supersingular elliptic curves.
(ii) $K m(A)$ is a K3 surface in all other cases.

Proposition 2. The Picard number ρ of $K m(A)$ in the case (ii) is given as follows:

$$
\rho= \begin{cases}18 & \text { if } E \nsucc E^{\prime}, \\ 19 & \text { if } E \sim E^{\prime}, \operatorname{End}(E)=Z, \\ 20 & \text { if } E \sim E^{\prime}, \operatorname{End}(E) \neq Z .\end{cases}
$$

Here " \sim " indicates isogeny. Note in particular that the $K 3$ surfaces $K m(A)$ in (ii) cannot be supersingular in the sense of M. Artin [1], nor unirational (cf. [9]). It will be interesting to study the singularities of A / c and to obtain its non-singular model for any abelian surface (or variety) in characteristic 2. For example, we can ask: (i) Is A / c rational if A has no point of exact order 2? (In this case, A / c is unirational.) (ii) Is A / \subset birationally equivalent to a $K 3$ surface if A has at least one point of exact order 2? We shall consider these questions in some occasion.

