No. 9]

155. Note on Pure Subsystems

By Nobuaki KUROKI

College of Science and Technology, Nihon University

(Comm. by Kenjiro SHODA, M. J. A., Nov. 12, 1974)

1. By a right S-system M_S over a semigroup S we mean a set M together with a mapping $(x, a) \rightarrow xa$ of $M \times S$ into M satisfying

$$x(ab) = (xa)b$$

for all $x \in M$ and $a, b \in S$. A non-empty subset N of a right S-system M_S is called an S-subsystem of M_S if $NS \subseteq N$. An S-subsystem N of a right S-system M_S is called R-pure in S if

 $N \cap Ma = Na$

for all $a \in S$. Since the inclusion \supseteq is true for every S-subsystem N of M_s , the essential requirement is

$$N \cap Ma \subseteq Na$$

for all $a \in S$. A right S-system M_s is called R^* -pure if every S-subsystem of M_s is R-pure in S.

In [3] the author proved that for a semigroup S with an identity the following conditions are equivalent:

(1) S is regular.

(2) Every unital right S-system M_s is R^* -pure.

(3) S is R^* -pure.

In this note we shall give another properties of pure S-subsystems of a right S-system M_s over a semigroup S. For the terminology not defined here we refer to the book by A. H. Clifford and G. B. Preston [1].

2. A subsemigroup B of a semigroup S is called a *bi-ideal* of S if $BSB \subseteq B$. We denote by [b] the principal bi-ideal of a semigroup S generated by b in S, that is,

$$[b] = b \cup b^2 \cup bSb.$$

First we give the following.

Theorem 1. For an S-subsystem N of a right S-system M_s over a semigroup S the following conditions are equivalent:

(1) N is R-pure in S.

(2) $N \cap MB = NB$ for all bi-ideals B of S.

(3) $N \cap M[b] = N[b]$ for all $b \in S$.

Proof. First we assume that N is R-pure in S. Let B be any bi-ideal of S and p=qb $(p \in N, q \in M, b \in B)$ any element of $N \cap MB$. Then we have

$$p = qb \in N \cap Mb = Nb \subseteq NB$$