187. Denseness of Singular Densities

By Michihiko Kawamura**
Mathematical Institute, Department of Education, Fukui University
(Comm. by Kôsaku Yosida, m. J. A., Dec. 12, 1974)

Consider a 2-form $P(z) d x d y$ on an open Riemann surface R such that the coefficients $P(z)$ are nonnegative locally Hölder continuous functions of local parameters $z=x+i y$ on R. Such a 2 -form $P(z) d x d y$ will be referred to as a density on R. We shall call a density P singular if any nonnegative C^{2} solution u of the elliptic equation

$$
\begin{equation*}
\Delta u(z)=P(z) u(z) \quad\left(\text { i.e. } d^{*} d u(z)=u(z) P(z) d x d y\right) \tag{1}
\end{equation*}
$$

on R has the zero infimum, i.e. $\inf _{z \in R} u(z)=0$. We denote by $D=D(R)$ and $D_{S}=D_{S}(R)$ the set of densities and singular densities on R, respectively. According to Myrberg [2], (1) always possesses at least one strictly positive solution for any open Riemann surface R. In connection with the existence of Evans solution, Nakai [5] showed that $D_{S} \neq \emptyset$ for any open Riemann surface R. The purpose of this note is to show that D_{S} is not only nonvoid but also contains sufficiently many members in the following sense: D_{S} is dense in D with respect to the metric

$$
\rho\left(P_{1}, P_{2}\right)=\left(\int_{R}\left|P_{1}(z)-P_{2}(z)\right| d x d y\right)^{*}
$$

on D, where $a^{*}=a /(1+a)$ for nonnegative numbers and $\infty^{*}=1$. Namely, we shall prove the following

Theorem. The subspace $D_{S}(R)$ of singular densities is dense in the metric space $(D(R), \rho)$ for any open Riemann surface R.

Proof. We only have to show that for any $P \in D$ and any $\eta>0$, there exists a $Q \in D_{S}$ such that

$$
\begin{equation*}
\int_{R}|P(z)-Q(z)| d x d y \leq \eta \tag{2}
\end{equation*}
$$

Our proof goes on an analogous way to [5]. Let $\left(\left\{z_{j}\right\},\left\{U_{j}\right\},\left\{\eta_{j}\right\}\right)$ $(j=1,2, \cdots)$ be a system such that $\left\{z_{j}\right\}$ is a sequence of points in R not accumulating in R, U_{j} are parametric disks on R with centers z_{j} such that $\bar{U}_{j} \cap \bar{U}_{k}=\emptyset(j \neq k)$, and $\left\{\eta_{j}\right\}$ is a sequence with $\eta_{j}>0$ and $\sum_{j=1}^{\infty} \eta_{j}=\eta$. Furthermore we denote by V_{j} the concentric parametric disk $|z|<\rho_{j}$ $=\exp \left(-4 \pi / \eta_{j}\right)$ of $U_{j}(j=1,2, \cdots)$. Let $G(z, \zeta)$ be the Green's function on $S=R-\bigcup_{j=1}^{\infty} \bar{V}_{j}$ for (1). Fix a point $z_{0} \in S$ and set

[^0]
[^0]: *) The work was done while the author was a Research Fellow at Nagoya University in 1974 supported by Japan Ministry of Education. The author is grateful to Professor Nakai for the valuable discussions with him.

