187. Denseness of Singular Densities

By Michihiko KAWAMURA*)

Mathematical Institute, Department of Education, Fukui University

(Comm. by Kôsaku Yosida, M. J. A., Dec. 12, 1974)

Consider a 2-form P(z)dxdy on an open Riemann surface R such that the coefficients P(z) are nonnegative locally Hölder continuous functions of local parameters z=x+iy on R. Such a 2-form P(z)dxdy will be referred to as a *density* on R. We shall call a density P singular if any nonnegative C^2 solution u of the elliptic equation

(1)
$$\Delta u(z) = P(z)u(z) \qquad \text{(i.e. } d^*du(z) = u(z)P(z)dxdy)$$

on R has the zero infimum, i.e. $\inf_{z\in R}u(z)=0$. We denote by D=D(R) and $D_S=D_S(R)$ the set of densities and singular densities on R, respectively. According to Myrberg [2], (1) always possesses at least one strictly positive solution for any open Riemann surface R. In connection with the existence of Evans solution, Nakai [5] showed that $D_S\neq\emptyset$ for any open Riemann surface R. The purpose of this note is to show that D_S is not only nonvoid but also contains sufficiently many members in the following sense: D_S is dense in D with respect to the metric

$$\rho(P_1, P_2) = \left(\int_{\mathbb{R}} |P_1(z) - P_2(z)| \, dx dy \right)^*$$

on D, where $a^*=a/(1+a)$ for nonnegative numbers and $\infty^*=1$. Namely, we shall prove the following

Theorem. The subspace $D_s(R)$ of singular densities is dense in the metric space $(D(R), \rho)$ for any open Riemann surface R.

Proof. We only have to show that for any $P \in D$ and any $\eta > 0$, there exists a $Q \in D_S$ such that

(2)
$$\int_{\mathbb{R}} |P(z) - Q(z)| \, dx dy \leq \eta.$$

Our proof goes on an analogous way to [5]. Let $(\{z_j\}, \{U_j\}, \{\eta_j\})$ $(j=1,2,\cdots)$ be a system such that $\{z_j\}$ is a sequence of points in R not accumulating in R, U_j are parametric disks on R with centers z_j such that $\overline{U}_j \cap \overline{U}_k = \emptyset$ $(j \neq k)$, and $\{\eta_j\}$ is a sequence with $\eta_j > 0$ and $\sum_{j=1}^{\infty} \eta_j = \eta$. Furthermore we denote by V_j the concentric parametric disk $|z| < \rho_j$ $= \exp(-4\pi/\eta_j)$ of U_j $(j=1,2,\cdots)$. Let $G(z,\zeta)$ be the Green's function on $S = R - \bigcup_{j=1}^{\infty} \overline{V}_j$ for (1). Fix a point $z_0 \in S$ and set

^{*} The work was done while the author was a Research Fellow at Nagoya University in 1974 supported by Japan Ministry of Education. The author is grateful to Professor Nakai for the valuable discussions with him.