181. Cohomology of Vector Fields on a Complex Manifold

By Toru Tsujishita
University of Tokyo

(Comm. by Kunihiko Kodaira, m. J. A., Dec. 12, 1974)
§ 1. Let M be a complex manifold. Let \mathcal{A} denote the space of smooth vector fields of type (1,0) on $M . \mathcal{A}$ is regarded as a Lie algebra under the usual bracket operation. Recently it is shown that the Lie algebra structure of \mathcal{A} uniquely determines the complex analytic structure of M (I. Amemiya [1]), and thus it would be interesting to calculate the cohomology of the Lie algebra \mathcal{A} associated with various representations. In this note, we shall state some results concerning the cohomology of the Lie algebra A. Details will appear elsewhere.

The author would like to express his gratitude to Professor K. Shiga for his valuable suggestions.
§ 2. We recall here briefly the definition of the cohomology group of a Lie algebra \mathfrak{g} associated with a \mathfrak{g}-module W. Let $C^{p}(\mathfrak{g} ; W)$ denote the space of alternating p-forms on g with values in the vector space W for $p>0$; we put $C^{0}(\mathfrak{g} ; W)=W$ and $C^{p}(g ; W)=0$ for $p<0$. The coboundary operator $d: C^{p}(g ; W) \rightarrow C^{p+1}(g ; W)$ is defined by the following formula:

$$
\begin{aligned}
& (d \omega)\left(X_{1}, \cdots, X_{p+1}\right)=\sum_{i=1}^{p+1}(-1)^{i-1} X_{i} \omega\left(X_{1}, \cdots, \hat{X}_{i}, \cdots, X_{p_{+1}}\right) \\
& \quad+\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \cdots, \hat{X}_{i}, \cdots, \hat{X}_{j}, \cdots, X_{p_{+1}}\right)
\end{aligned}
$$

$\left(X_{1}, \cdots, X_{p+1} \in \mathfrak{g}, \omega \in C^{p}(g ; W)\right.$). The p-th cohomology group of this cochain complex $C(g ; W)=\oplus_{p} C^{p}(\mathfrak{g} ; W)$ will be denoted by $H^{p}(g ; W)$. If the g -module W has a ring structure such that $X(f g)=(X f) g+f(X g)$ $(X \in \mathfrak{g}, f, g \in W)$, then the total cohomology $H^{*}(g ; W)=\oplus_{p} H^{p}(g ; W)$ has a graded ring structure. (For more details, see [3].)
§ 3. The Lie algebra \mathcal{A} has a representation on the ring \mathscr{F} of smooth functions on M when the vector fields are identified canonically with the derivations on the ring \mathcal{F}. We shall denote by $C_{4}^{p}(\mathcal{A} ; \mathcal{F})$ the subspace of $C_{0}^{p}(\mathcal{A} ; \mathscr{F})$ consisting of the elements ω such that $\operatorname{supp}\left(\omega\left(X_{1}, \cdots, X_{p}\right)\right) \subset \bigcap_{i=1}^{p} \operatorname{supp}\left(X_{i}\right)\left(X_{1}, \cdots, X_{p} \in \mathcal{A}\right)$. Furthermore we shall denote by $C_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$ the subspace of $C_{4}^{p}(\mathcal{A} ; \mathscr{F})$ consisting of the elements ω such that, if $f \in \mathscr{F}$ is anti-holomorphic on an open subset U of M, then $\omega\left(f X_{1}, X_{2}, \cdots, X_{p}\right)=f \omega\left(X_{1}, X_{2}, \cdots, X_{p}\right)$ on U for any X_{1}, $X_{2}, \cdots X_{p} \in \mathcal{A}$. If we put $C_{\Delta}(\mathcal{A} ; \mathscr{F})=\oplus_{p} C_{\mathcal{A}}^{p}(\mathcal{A} ; \mathscr{F})$, and $C_{\partial}(\mathcal{A} ; \mathscr{F})$ $=\oplus_{p} C_{\partial}^{p}(\mathcal{A} ; \mathscr{F})$, then $C_{\Delta}(\mathcal{A} ; \mathscr{F})$ and $C_{\partial}(\mathcal{A} ; \mathscr{F})$ form a subcomplex of

