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1. Introduction. In this paper we shall consider unctions defined
on the torus. S. Bernstein’s theorem [7; vol. 1, p. 240] says that the
set Lip a is contained in the space A of unctions with an absolutely
convergent Fourier series when a1/2. As is well known, the space
A coincides with the space L2.L [7; vol. 1, p. 251]. These assert that
Lipa is contained in L.L i al/2. On the other hand, R. Salem’s
result [6] implies that the space L.L is equal to the space C of all con-
tinuous functions (see also [2]). Therefore it is trivial that Lip a is con-
tained in LX.L or a0. Then it is expected that Lip a is contained
in Lp.Lq i a 1 / q where 1 p 2 and 1 / 1o + 1 q- 1. This act is proved
by using results o N. Aronszajn-K. T. Smith and A. P. Calderon (see
[3]). We shall give an elementary proo.

Theorem 1. Let l<=pc, 1/p+l/q-l and l<=r=c. If f eL
and lan-- fl r--O(n-) for some 1/q, then f e Lp.L where an is the
n-th (C, 1) mean of Fourier series of f

Corollary 1. Let l=<p__<2 and 1/p+l/q--1. If crl/q, then
Lip c is contained in L.Lq. There exists however a function which
belongs to Lip 1/q but not to L.L if p=/=l.

Now we denote by BV the space of unctions o p-bounded vari-
ation for l__<p<__ c (see [3] or [5] for definition). It is obvious that BV
is the set of unctions o ordinary bounded variation and BV is of
bounded functions.

Corollary 2. If lp2 and lip+l/q-I, then the intersection

of Lipa and BVq_ is contained in L’.L for0 and 0.
The case p--2 and e--1 is A. Zygmund’s theorem [7; vol. 1, p. 241]

by A--L.L and the case p-1, as previously stated, is trivial from R.
Salem’s result.

In the proof o Theorem 1, we use a method of R. Salem [6].
2. Lemmas. We shall here state some lemmas.
Lemma 1. Let l<=p<=c and 1/p+l/q-1. If a positive and

convex sequence {2n} tending to zero satisfies the condition

nl+l/q(n_l + n+l--2n) (:,

then there is a function g in L such that (n)-2n for every integer n.
Proof. Denoting the Fejr kernel by Kn, the series


