178. Lipschitz Functions and Convolution

By Yoshikazu Uno
Kanazawa University
(Comm. by Kinjirô Kunugi, m. J. A., Dec. 12, 1974)

1. Introduction. In this paper we shall consider functions defined on the torus. S. Bernstein's theorem [7; vol. 1, p. 240] says that the set $\operatorname{Lip} \alpha$ is contained in the space A of functions with an absolutely convergent Fourier series when $\alpha>1 / 2$. As is well known, the space A coincides with the space $L^{2} * L^{2}$ [7; vol. 1, p. 251]. These assert that $\operatorname{Lip} \alpha$ is contained in $L^{2} * L^{2}$ if $\alpha>1 / 2$. On the other hand, R. Salem's result [6] implies that the space $L^{1} * L^{\infty}$ is equal to the space C of all continuous functions (see also [2]). Therefore it is trivial that $\operatorname{Lip} \alpha$ is contained in $L^{1} * L^{\infty}$ for $\alpha>0$. Then it is expected that Lip α is contained in $L^{p} * L^{q}$ if $\alpha>1 / q$ where $1<p<2$ and $1 / p+1 / q=1$. This fact is proved by using results of N. Aronszajn-K. T. Smith and A. P. Calderon (see [3]). We shall give an elementary proof.

Theorem 1. Let $1 \leqq p<\infty, 1 / p+1 / q=1$ and $1 \leqq r \leqq \infty$. If $f \in L^{r}$ and $\left\|\sigma_{n}-f\right\|_{r}=O\left(n^{-\alpha}\right)$ for some $\alpha>1 / q$, then $f \in L^{p} * L^{r}$ where σ_{n} is the n-th $(C, 1)$ mean of Fourier series of f.

Corollary 1. Let $1 \leqq p \leqq 2$ and $1 / p+1 / q=1$. If $\alpha>1 / q$, then $\operatorname{Lip} \alpha$ is contained in $L^{p} * L^{q}$. There exists however a function which belongs to Lip $1 / q$ but not to $L^{p} * L^{q}$ if $p \neq 1$.

Now we denote by $B V_{p}$ the space of functions of p-bounded variation for $1 \leqq p \leqq \infty$ (see [3] or [5] for definition). It is obvious that $B V_{1}$ is the set of functions of ordinary bounded variation and $B V_{\infty}$ is of bounded functions.

Corollary 2. If $1 \leqq p \leqq 2$ and $1 / p+1 / q=1$, then the intersection of $\operatorname{Lip} \alpha$ and $B V_{q-\varepsilon}$ is contained in $L^{p} * L^{q}$ for $\alpha>0$ and $\varepsilon>0$.

The case $p=2$ and $\varepsilon=1$ is A. Zygmund's theorem [7; vol. 1, p. 241] by $A=L^{2} * L^{2}$ and the case $p=1$, as previously stated, is trivial from R . Salem's result.

In the proof of Theorem 1, we use a method of R. Salem [6].
2. Lemmas. We shall here state some lemmas.

Lemma 1. Let $1 \leqq p \leqq \infty$ and $1 / p+1 / q=1$. If a positive and convex sequence $\left\{\lambda_{n}\right\}$ tending to zero satisfies the condition

$$
\sum_{n=1}^{\infty} n^{1+1 / q}\left(\lambda_{n-1}+\lambda_{n+1}-2 \lambda_{n}\right)<\infty
$$

then there is a function g in L^{p} such that $\hat{g}(n)=\lambda_{|n|}$ for every integer n.
Proof. Denoting the Fejér kernel by K_{n}, the series

