25. On Decompositions of Linear Mappings among Operator Algebras

By Fumio Kubo
Department of Mathematics, Osaka Kyoiku University
(Comm. by Kinjirô KunugI, M. J. A., Feb. 12, 1975)

1. Introduction. Let φ be a $B(H)$-valued function on a set X where $B(H)$ is the algebra of all (bounded linear) operators on a Hilbert space H, and (S) be a property on such φ 's. A (closed) subspace M of $H(S)$-reduces φ if M reduces $\varphi(x)$ for all $x \in X$ and $\varphi(x) \mid M \in(S)$ where $\psi \in(S)$ if ψ has (S). For a subspace N reducing all $\varphi(x)$, the function $\varphi(x) \mid N$ is completely non-(S) if there is no non-zero subspace which (S)-reduces the function.

A strongly closed set P of projections of a von Neumann algebra A is a Szymanski family if P satisfies the following conditions (cf. [6]):
(1) If $e, f \in P$ then $e \wedge f \in P$,
(2) If $e, f \in P$ and $e f=0$ then $e+f \in P$,
(3) If $e, f \in P$ and $e \geq f$ then $e-f \in P$
and
(4) If $e \in P, f \in \operatorname{proj}(A)$ and $e \sim f(\bmod . A)$ then $f \in P . P$ is called hereditary if it satisfies
(5) If $e \in P, f \in \operatorname{proj}(A)$ and $e \geq f$ then $f \in P$.

If P is a hereditary Szymanski family, then P is a principal ideal of the lattice $L=\operatorname{proj}(A), \mathrm{cf}$. [9, Lemma 2], and the largest element e_{0} of P is central according to [9, Theorem 5]. Recently Y. Kato and S. Maeda [8] proved that the localization of e_{0} in the center of L has a purely lattice theoretic character. Summing up:

Theorem 1. If P is a Szymanski family in a von Neumann algebra A, then there exists the largest projection e_{0} of P in the center of A.

Let $A=\left(\varphi(X) \cup \varphi(X)^{*}\right)^{\prime}$ where B^{\prime} is the commutant of B. A prop$\operatorname{erty}(S)$ is called a Szymanski property if

$$
P=\{e \in \operatorname{proj}(A): \varphi(\cdot) \mid e H \in(S)\}
$$

is a hereditary Szymanski family. Szymanski [9] proved the following general decomposition theorem for operator valued functions.

Theorem 2. If (S) is a Szymanski property, then there exists the largest (S)-reducing subspace $e_{0} H$ such that $\varphi(\cdot) e_{0} \in(S)$, and $\varphi(\cdot) e_{0}^{\perp}$ is completely non-(S).

In the present note we shall show that these theorems are applicable to operator algebras. We shall treat the decomposition of expec-

