25. On Decompositions of Linear Mappings among Operator Algebras

By Fumio KUBO

Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1975)

1. Introduction. Let φ be a B(H)-valued function on a set X where B(H) is the algebra of all (bounded linear) operators on a Hilbert space H, and (S) be a property on such φ 's. A (closed) subspace M of H(S)-reduces φ if M reduces $\varphi(x)$ for all $x \in X$ and $\varphi(x) | M \in (S)$ where $\psi \in (S)$ if ψ has (S). For a subspace N reducing all $\varphi(x)$, the function $\varphi(x) | N$ is completely non-(S) if there is no non-zero subspace which (S)-reduces the function.

A strongly closed set P of projections of a von Neumann algebra A is a *Szymanski family* if P satisfies the following conditions (cf. [6]):

- (1) If $e, f \in P$ then $e \wedge f \in P$,
- (2) If $e, f \in P$ and ef = 0 then $e + f \in P$,
- (3) If $e, f \in P$ and $e \ge f$ then $e f \in P$

and

(4) If $e \in P$, $f \in \text{proj}(A)$ and $e \sim f \pmod{A}$ then $f \in P$. P is called hereditary if it satisfies

(5) If $e \in P$, $f \in \text{proj}(A)$ and $e \ge f$ then $f \in P$.

If *P* is a hereditary Szymanski family, then *P* is a principal ideal of the lattice L=proj(A), cf. [9, Lemma 2], and the largest element e_0 of *P* is central according to [9, Theorem 5]. Recently Y. Kato and S. Maeda [8] proved that the localization of e_0 in the center of *L* has a purely lattice theoretic character. Summing up:

Theorem 1. If P is a Szymanski family in a von Neumann algebra A, then there exists the largest projection e_0 of P in the center of A.

Let $A = (\varphi(X) \cup \varphi(X)^*)'$ where B' is the commutant of B. A property (S) is called a *Szymanski property* if

 $P = \{ e \in \operatorname{proj}(A) : \varphi(\cdot) \mid eH \in (S) \}$

is a hereditary Szymanski family. Szymanski [9] proved the following general decomposition theorem for operator valued functions.

Theorem 2. If (S) is a Szymanski property, then there exists the largest (S)-reducing subspace e_0H such that $\varphi(\cdot)e_0 \in (S)$, and $\varphi(\cdot)e_0^{\perp}$ is completely non-(S).

In the present note we shall show that these theorems are applicable to operator algebras. We shall treat the decomposition of expec-