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1. Introduction. Let 9 be a B(H)-valued function on a set X
where B(H) is the algebra of all (bounded linear) operators on a Hilbert
space H, and (S) be a property on such 9’s. A (closed) subspace M of
H (S)-reduces 9 if M reduces 9(x) for all x e X and 9(x) lM e (S) where
+ e (S) if + has (S). For a subspace N reducing all 9(x), the function
9(x) IN is completely non-(S) if there is no non-zero subspace which
(S)-reduces the function.

A strongly closed set P of projections of a von Neumann algebra
A is a Szymanstci family if P satisfies the following conditions (cf. [6]):

(1) If e, f e P then e/f e P,
(2) If e, f e P and ef=O then e + f e P,
(3) If e, f e P and e >_f then e-f e P

and
(4) If e e P, f e proj (A) and e f (mod. A) then f e P. P is called

hereditary if it satisfies
(5) If e e P, f e proj (A) and e >_f then f e P.

If P is a hereditary Szymanski family, then P is a principal ideal of
the lattice L-proj (A), cf. [9, Lemma 2], and the largest element e0 of
P is central according to [9, Theorem 5]. Recently Y. Kato and
S. Maeda [8] proved that the localization of e0 in the center of L has a
purely lattice theoretic character. Summing up"

Theorem 1. If P is a Szymanski family in a yon Neumann alge-
bra A, then there exists the largest projection eo of P in the center
of A.

Let A =(9(X) 9(X)*)’ where B’ is the commutallt of B. A prop-
erty (S) is called a Szymanski property if

P= {e e proj (A)" 9(’)1 eHe (S)}
is a hereditary Szymanski family. Szymanski [9] proved the following
general decomposition theorem for operator valued functions.

Theorem 2. If (S) is a Szymanski property, then there exists the
largest (S)-reducing subspace eoH such that 9(’)eo (S), and 9(.)eo is
completely non-(S).

In the present note we shall show that these theorems are applica-
ble to operator algebras. We shall treat the decomposition of expec-


