24. The Local Maximum Modulus Principle for Function Spaces

By Yukio Hirashita*) and Junzo Wada**)
(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1975)

The local maximum modulus principle for function algebras due to H. Rossi [5] is well-known. The purpose of this paper is to consider the principle for function spaces, more correctly speaking, for function systems. In § 1 , for any function system \mathcal{F}, we define the $L M M(\mathscr{F})$ boundary which plays the same rôle as the Shilov boundary in the Rossi's principle. In §§ 2 and 3, properties of the $L M M(\mathscr{F})$-boundary and relations between the Rossi's principle and ours are discussed.
§ 1. The LMM-boundary. Let X be a compact Hausdorff space. For any subset S in X, \dot{S} denotes the topological boundary of S, i.e., $\dot{S}=\bar{S} \backslash S^{i}$, where \bar{S} and S^{i} are the closure and the interior of S in X respectively.

Let \mathscr{F} be a family of complex-valued bounded continuous functions defined on subsets of X. We denote the domain of f by $D(f)(f \in \mathscr{F})$. \mathscr{F} is said to be a function system on X if \mathscr{F} has the following properties:
(1) If $f, g \in \mathscr{F}$ and α, β are complex numbers, then $\alpha f+\beta g$ (defined on $D(f) \cap D(g))$ belongs to \mathscr{F}.
(2) $\mathscr{F}_{x}=\{f \in \mathscr{F}: D(f)=X\}$ separates points of X and contains constant functions.

Let \mathscr{F} be a function system on X. We will say that a subset E of X satisfies the $L M M(\mathscr{F})$-principle if $\|f\|_{\dot{U}}=\|f\|_{U}$ for any open subset U in X with $U \cap E=\phi$ and for any $f \in \mathscr{F}$ with $D(f) \supset \bar{U}$, where $\|f\|_{P}$ $=\sup _{x \in P}|f(x)|$ for any $P\left(\|f\|_{\phi}=0\right.$ for the empty set $\left.\phi\right)$.

We shall first show that there exists the smallest one F_{0} among non-void ${ }^{1)}$ closed subsets which satisfy the $L M M(\mathscr{F})$-principle. Such set F_{0} is called the $L M M(\mathscr{F})$-boundary and we write $F_{0}=L M M(\mathscr{F})$.

Theorem 1.1. For any function system \mathscr{F}, there exists the LMM (FF)-boundary.

Proof. Let $\mathscr{P}=\left\{F_{\lambda}\right\}_{\lambda \in A^{2)}}$ be the family of all (non-void) closed subsets in X which satisfy the $L M M(\mathscr{P})$-principle. We define a partial order \succ in Λ as follows: $\lambda \succ \mu$ if and only if $F_{\lambda} \supset F_{\mu}$. It is not hard to

[^0]
[^0]: *) Kyushu University, Fukuoka.
 **) Waseda University, Tokyo.

 1) The empty set ϕ does not satisfy the $L M M(\mathscr{F})$-principle.
 2) \mathscr{P} is non-void, because $\mathscr{P} \ni X$.
