24. The Local Maximum Modulus Principle for Function Spaces

By Yukio HIRASHITA*) and Junzo WADA**)

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1975)

The local maximum modulus principle for function algebras due to H. Rossi [5] is well-known. The purpose of this paper is to consider the principle for function spaces, more correctly speaking, for function systems. In § 1, for any function system \mathcal{F} , we define the $LMM(\mathcal{F})$ boundary which plays the same rôle as the Shilov boundary in the Rossi's principle. In §§ 2 and 3, properties of the $LMM(\mathcal{F})$ -boundary and relations between the Rossi's principle and ours are discussed.

§ 1. The *LMM*-boundary. Let X be a compact Hausdorff space. For any subset S in X, \dot{S} denotes the topological boundary of S, i.e., $\dot{S} = \bar{S} \setminus S^i$, where \bar{S} and S^i are the closure and the interior of S in X respectively.

Let \mathcal{F} be a family of complex-valued bounded continuous functions defined on subsets of X. We denote the domain of f by D(f) $(f \in \mathcal{F})$. \mathcal{F} is said to be a *function system* on X if \mathcal{F} has the following properties:

(1) If $f, g \in \mathcal{F}$ and α, β are complex numbers, then $\alpha f + \beta g$ (defined on $D(f) \cap D(g)$) belongs to \mathcal{F} .

(2) $\mathcal{F}_X = \{f \in \mathcal{F} : D(f) = X\}$ separates points of X and contains constant functions.

Let \mathcal{F} be a function system on X. We will say that a subset E of X satisfies the $LMM(\mathcal{F})$ -principle if $||f||_{\dot{U}} = ||f||_U$ for any open subset U in X with $U \cap E = \phi$ and for any $f \in \mathcal{F}$ with $D(f) \supset \overline{U}$, where $||f||_P = \sup_{x \in \mathcal{P}} |f(x)|$ for any $P(||f||_{\phi} = 0$ for the empty set ϕ).

We shall first show that there exists the smallest one F_0 among non-void¹⁾ closed subsets which satisfy the $LMM(\mathcal{F})$ -principle. Such set F_0 is called the $LMM(\mathcal{F})$ -boundary and we write $F_0 = LMM(\mathcal{F})$.

Theorem 1.1. For any function system \mathcal{F} , there exists the $LMM(\mathcal{F})$ -boundary.

Proof. Let $\mathcal{P} = \{F_{\lambda}\}_{\lambda \in \Lambda^2}$ be the family of all (non-void) closed subsets in X which satisfy the $LMM(\mathcal{P})$ -principle. We define a partial order \succ in Λ as follows: $\lambda \succ \mu$ if and only if $F_{\lambda} \supset F_{\mu}$. It is not hard to

^{*)} Kyushu University, Fukuoka.

^{**)} Waseda University, Tokyo.

¹⁾ The empty set ϕ does not satisfy the $LMM(\mathcal{F})$ -principle.

²⁾ \mathcal{P} is non-void, because $\mathcal{P} \ni X$.