31. On Some Noncoercive Boundary Value
 Problems for the Laplacian

By Kazuaki TAira
Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kôsaku Yosida, m. J. A., March 12, 1975)

1. Introduction. Let Ω be a bounded domain in \boldsymbol{R}^{n} with boundary Γ of class $C^{\infty} . \quad \bar{\Omega}=\Omega \cup \Gamma$ is a C^{∞}-manifold with boundary. Let a, b and c be real valued C^{∞}-functions on Γ, let n be the unit exterior normal to Γ and let α and β be real C^{∞}-vector fields on Γ.

We shall consider the following boundary value problem: For given functions f defined on Ω and ϕ defined on Γ find u in Ω such that

$$
\left\{\begin{array}{l}
(\lambda-\Delta) u=f \quad \text { in } \Omega, \tag{*}\\
\mathscr{B} u \equiv a \frac{\partial u}{\partial \boldsymbol{n}}+(\alpha+i \beta) u+(b+i c) u=\phi \quad \text { on } \Gamma .
\end{array}\right.
$$

Here $\lambda \geqq 0$ and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$. The problem (*) in the case that $\beta(x) \equiv 0$ on Γ, i.e., the oblique derivative problem was investigated by many authors (cf. [2], [6], [7], [8]), but the problem (*) in the case that $\beta(x) \not \equiv 0$ on Γ was treated by a few authors, e.g., Vaǐnberg and Grušin [12] (see also [5]), whose results we shall first describe briefly. For each real s, we shall denote by $H^{s}(\Omega)$ (resp. $H^{s}(\Gamma)$) the Sobolev space on Ω (resp. Γ) of order s and by $\left\|\|_{s}\right.$ (resp. | $\left.\right|_{s}$) its norm.

If $a(x)>|\beta(x)|$ on Γ where $|\beta(x)|$ is the length of the tangent vector $\beta(x)$, then the problem (*) is coercive and the following results are valid for all $s>3 / 2$ (cf. [9]):
i) For every solution $u \in H^{t}(\Omega)$ of (*) with $f \in H^{s-2}(\Omega)$ and $\phi \in H^{s-3 / 2}(\Gamma)$ we have $u \in H^{s}(\Omega)$ and an a priori estimate :

$$
\begin{equation*}
\|u\|_{s} \leqq C_{1}\left(\|f\|_{s-2}+|\phi|_{s-3 / 2}+\|u\|_{t}\right) \tag{1}
\end{equation*}
$$

where $t<s$ and $C_{1}>0$ is a constant depending only on λ, s and t.
ii) If $f \in H^{s-2}(\Omega), \phi \in H^{s-3 / 2}(\Gamma)$ and ($\left.f, \phi\right)$ is orthogonal to some finite dimensional subspace of $C^{\infty}(\bar{\Omega}) \oplus C^{\infty}(\Gamma)$, then there is a solution $u \in H^{s}(\Omega)$ of (*).
iii) If $\lambda>0$ is sufficiently large, then we can omit $\|u\|_{t}$ in the right hand side of (1) and for every $f \in H^{s-2}(\Omega)$ and every $\phi \in H^{s-3 / 2}(\Gamma)$ there is a unique solution $u \in H^{s}(\Omega)$ of (*).

If $a(x) \geqq|\beta(x)|$ on Γ and $a(x)=|\beta(x)|$ holds at some points of Γ, then the problem (*) is noncoercive. Vaǐnberg and Grušin [12] treated the problem ($*$) in the case that $n=2, a(x) \equiv 1, \alpha(x) \equiv 0,|\beta(x)| \equiv 1$ on Γ. Under the assumption that $b(x)+i c(x) \neq 0$ on Γ, they proved smoothness, an a priori estimate and existence theorems for the solutions of

