31. On Some Noncoercive Boundary Value Problems for the Laplacian

By Kazuaki TAIRA

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1975)

1. Introduction. Let Ω be a bounded domain in \mathbb{R}^n with boundary Γ of class C^{∞} . $\overline{\Omega} = \Omega \cup \Gamma$ is a C^{∞} -manifold with boundary. Let a, b and c be real valued C^{∞} -functions on Γ , let n be the unit exterior normal to Γ and let α and β be real C^{∞} -vector fields on Γ .

We shall consider the following boundary value problem: For given functions f defined on Ω and ϕ defined on Γ find u in Ω such that

(*)
$$\begin{cases} (\lambda - \Delta)u = f & \text{if } \Omega, \\ \mathcal{B}u \equiv a \frac{\partial u}{\partial n} + (\alpha + i\beta)u + (b + ic)u = \phi & \text{on } \Gamma. \end{cases}$$

Here $\lambda \ge 0$ and $\Delta = \partial^2/\partial x_1^2 + \partial^2/\partial x_2^2 + \cdots + \partial^2/\partial x_n^2$. The problem (*) in the case that $\beta(x) \equiv 0$ on Γ , i.e., the *oblique* derivative problem was investigated by many authors (cf. [2], [6], [7], [8]), but the problem (*) in the case that $\beta(x) \equiv 0$ on Γ was treated by a few authors, e.g., Vainberg and Grušin [12] (see also [5]), whose results we shall first describe briefly. For each real s, we shall denote by $H^s(\Omega)$ (resp. $H^s(\Gamma)$) the Sobolev space on Ω (resp. Γ) of order s and by $|| ||_s$ (resp. $||_s$) its norm.

If $a(x) > |\beta(x)|$ on Γ where $|\beta(x)|$ is the length of the tangent vector $\beta(x)$, then the problem (*) is *coercive* and the following results are valid for all s > 3/2 (cf. [9]):

i) For every solution $u \in H^{t}(\Omega)$ of (*) with $f \in H^{s-2}(\Omega)$ and $\phi \in H^{s-3/2}(\Gamma)$ we have $u \in H^{s}(\Omega)$ and an a priori estimate:

(1) $||u||_{s} \leq C_{1}(||f||_{s-2} + |\phi|_{s-3/2} + ||u||_{t})$

where t < s and $C_1 > 0$ is a constant depending only on λ , s and t.

ii) If $f \in H^{s-2}(\Omega)$, $\phi \in H^{s-3/2}(\Gamma)$ and (f, ϕ) is orthogonal to some finite dimensional subspace of $C^{\infty}(\overline{\Omega}) \oplus C^{\infty}(\Gamma)$, then there is a solution $u \in H^{s}(\Omega)$ of (*).

iii) If $\lambda > 0$ is sufficiently large, then we can omit $||u||_t$ in the right hand side of (1) and for every $f \in H^{s-2}(\Omega)$ and every $\phi \in H^{s-3/2}(\Gamma)$ there is a unique solution $u \in H^{s}(\Omega)$ of (*).

If $a(x) \ge |\beta(x)|$ on Γ and $a(x) = |\beta(x)|$ holds at some points of Γ , then the problem (*) is *noncoercive*. Vainberg and Grušin [12] treated the problem (*) in the case that n=2, $a(x) \equiv 1$, $\alpha(x) \equiv 0$, $|\beta(x)| \equiv 1$ on Γ . Under the assumption that $b(x) + ic(x) \ne 0$ on Γ , they proved smoothness, an *a priori* estimate and existence theorems for the solutions of