56. Note on Continuation of Real Analytic Solutions of Partial Differential Equations with Constant Coefficients^{*}

By Akira KANEKO

College of General Education, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., April 12, 1975)

In [1], [2] and [3] we have given some results on continuation of real analytic solutions of linear partial differential equations with constant coefficients to convex sets K of various types. In this note we remark that the assumption of the convexity of K can be much weakened. This problem has been presented by Professor S. Ito. Also I am indebted to Professor H. Komatsu for the improvement of the result. I am very greteful for their valuable suggestions.

Theorem 1. Let K be a compact set in \mathbb{R}^n such that $\mathbb{R}^n \setminus K$ is connected. Let p(D) be a $t \times s$ matrix of linear partial differential operators with constant coefficients, and let p' be its transposed matrix. Assume that Hom (Coker p', \mathcal{P})=0 and that Ext^1 (Coker p', \mathcal{P}) has no elliptic components, where \mathcal{P} denotes the ring of polynomials. Then, for any open neighborhood U of K we have $A_p(U \setminus K) / A_p(U) = 0$, namely, every real analytic solution of p(D)u=0 can be uniquely continued to U.

Proof. Take $u \in A_p(U \setminus K)$. By the vanishing of the cohomology group $H^1(V, A)$ for any open set $V \subset \mathbb{R}^n$, we can take $f \in [A(\mathbb{R}^n \setminus K)]^s$ and $g \in [A(U)]^s$ such that

u=f-g on $U\setminus K$.

The assumption implies

 $0 = p(D)u = p(D)f - p(D)g \quad \text{on } U \setminus K.$

Hence p(D)f and p(D)g define an element h of $A_{p_1}(\mathbb{R}^n)$, where p_1 is the compatibility system of p. Let $V \supset K$ be a relatively compact convex open set. Then by the existence theorem (see, e.g., [5], Theorem 1) we can find $V \in [A(V)]^s$ such that p(D)v = h on V. Thus we have

$$|f-v|_{V\setminus \mathrm{ch}K} \in A_p(V\setminus \mathrm{ch}K),$$

where ch K denotes the convex hull of K. By Theorem 2.3 of [2], we obtain a unique continuation $[f-v] \in A_p(V)$ of $f-v|_{V \setminus chK}$. Since $\mathbb{R}^n \setminus K$ is connected, [f-v] agrees with f-v whenever both are defined. Therefore

$$[u] = [f - v] + v - g$$

^{*)} Partially supported by Fûjukai.