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1. Introduction and results. Let /2 be a domain in an n-
dimensional euclidean space R with smooth boundary 312. Let P be
a t-strictly hyperbolic operator of second order defined in the cylinder
R/2 and B a boundary operator of first order defined on R
Furthermore we assume that the boundary 312 is non-characteristic for
P and B and the coefficients of P and B are smooth and constant out-
side a compact set of RX. We then consider the following mixed
problem (P, B)"

P(t, x D, D)u(t, x) f(t, x) (t, x) e R 2 t O,
B(t,x;Dt, D)u(t,x)=g(t,x) (t,x)eR312 t>O,
Dtu(O, x)= hj(x) (]=0, 1) x e/2.

Here Dt=--i(3/3t), D=--i(3/3x) (k=l,...,n) and D=(D,...,D).
The aim of this paper is to show the following
Theorem. A mixed problem (P, B) is L-well posed i and only if

every constant coefficients problem frozen the coefficients at a boundary
point is L-well posed.

For the L-well posedness of mixed problems see [3].
The "only if" part of Theorem is a special case o [2], Theorem 1

which is proved by using the results in [4], [6]. When the coefficients
of B are real valued, the author characterized, using the method in [3],
L-well posed mixed problems with constant coefficients by the inequali-
ties among the coefficients and proved the "if" part of Theorem by
energy method ([1]). When the coefficients of B are complex valued, a
characterization of L-well posed mixed problems with constant
coefficients is obtained in the same direction as real case ([8]). In
general, a mixed problem is L-well posed whenever Lopatinski deter-
minant does not vanish ([5], [10]). Under the assumption of L-well
posedness, Lopatinski determinant does not vanish in the interior of
the most inner normal cone (11]) and also does not vanish for Im
where r is the covariable of t ([4]). When Lopatinski determinant
vanishes only oa the real points where the roots 2 are simple, a mixed
problem is L-well posed in the case of second order ([2], [9]). Here
is a root of characteristic polynomial with respect to the covariable of
normal direction to 3t. Thus the "if" part of theorem is proved if a


