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1. We shall consider a (bounded linear) operator T acting on a
Hilbert space . An operator T is hyponormal if TT*<T*T. And
T is quasinormal if T commutes with T*T. 1In [2] and [3], Campbell
has discussed a subclass of hyponormal operators: An operator 7T is
heminormal if T is hyponormal and T*T commutes with T7T*. The
subclass is called (BN)* in [3]. Also he proved

Theorem A. If T is heminormal, then T" is hyponormal for
every n.

We shall define a new class of operators to improve Theorem A.
For each k, an operator T is k-hyponormal if
(1) (TT**<(T*T)*.

Since f(A)=2* for 0<a<1 is operator monotone, every k-hyponormal
operator is hyponormal.

In this note, in § 2 we shall give characterizations of heminormal,
quasinormal and k-hyponormal operators by means of an operator equa-
tion due to Douglas [4]. In § 3, we shall show that every heminormal
operator is n-hyponormal for every n, and for each k, if T is k-hypo-
normal, then T* is hyponormal.

2. In this section, we shall characterize heminormal, quasinormal
and k-hyponormal operators. In [4], Douglas showed the following

Theorem B. Let A and B be operators on . Then AA* < *BB*
for some 2=0 if and only if there is an operator C such that A=BC.

In the proof of Theorem B, an operator C is constructed as follows;
(i) C*(B*x)=A*x for every x ¢ §, (ii) C* vanishes on ran (B*)+, and
(i) |C||=a.

Now we shall give a characterization of heminormal operators.

Theorem 1. An operator T is heminormal if and only if there is
a positive contraction P such that
(2) TT*=PT*T.

Proof. Suppose that T is heminormal. Since T*7T commutes with
TT*, we have (TT*)*<(T*T):. It follows from Theorem B that there is
an operator C such that TT*=T*TC, i.e., TT*=C*T*T. So we put
P=C*, then we have by the above remarks (i) and (ii)

(P(xy+ 1), 2, + 2,) =(Pw,, ) =0
for every «, e ran (T*T) and x, ¢ ran (T*T)L, that is, C*=0. Since P



