49. Automorphic Forms and Algebraic Extensions of Number Fields^{*}

By Hiroshi SAITO Department of Mathematics, Kyoto University (Comm. by Kunihiko KODAIRA, April 12, 1975)

§ 0. The purpose of this paper is to present a result on an arithmetical relation between Hilbert cusp forms over a totally real algebraic number field, which is a cyclic extension of the rational number field Q with a prime degree l, and cusp forms of one variable. The details of this result will appear in [7].

Let F be a totally real algebraic number field, and \mathfrak{o} be its maximal order. For an even positive integer κ , let $S_{\epsilon}(\Gamma)$ denote the space of Hilbert cusp forms of weight κ with respect to the subgroup $\Gamma = GL_2(\mathfrak{o})^+$ consisting of all elements with totally positive determinants in $GL_2(\mathfrak{o})$. For a place (archimedean or non-archimedean) v of F, let F_v be the completion of F at v. For a non-archimedean place v (= \mathfrak{p}), let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of \mathfrak{p} -adic integers of F_v . Let F_A be the adele ring of F, and consider the adele group $GL_2(F_A)$. Let \mathfrak{U}_F be the open subgroup $\prod_{\mathfrak{p}: \text{ non-archimedean}} GL_2(\mathfrak{o}_{\mathfrak{p}}) \times \prod_{\mathfrak{q}: \text{ archimedean}} GL_2(F_q)$ of $GL_2(F_A)$. Then we can consider the Hecke ring $R(\mathfrak{U}_F, GL_2(F_A))$ and its action \mathfrak{T} on $S_{\epsilon}(\Gamma)$ as in G. Shimura [8].

For the ordinary modular group $SL_2(Z) (=GL_2(Z)^+)$, we also consider its adelization $\mathfrak{U}_{\boldsymbol{Q}} = \prod_p GL_2(\boldsymbol{Z}_p) \times GL_2(\boldsymbol{R})$ and the Hecke ring $R(\mathfrak{U}_{\boldsymbol{Q}}, GL_2(\boldsymbol{Q}_A))$. The latter is acting on the space $S_{\epsilon}(SL_2(\boldsymbol{Z}))$ of cusp forms of weight κ with respect to $SL_2(\boldsymbol{Z})$.

§ 1. The space $S_{\epsilon}(\Gamma)$. Suppose F is a cyclic extension of Q of degree l. We fix an embedding of F into the real number field R and a generator σ of the Galois group Gal (F/Q) of the extension F/Q, then all the distinct embeddings of F into R are given by σ^i , $0 \le i \le l-1$. We consider the group $GL_2(F)$ as a subgroup of $GL_2(R)^l$ by $g \to (g, {}^{\sigma}g, \dots, {}^{\sigma^{l-1}g})$ for $g \in GL_2(F)$. For this fixed generator σ , we define an operator T_{σ} on $S_{\epsilon}(\Gamma)$ by the permutation of variables, namely $T_{\sigma}f(z_1, \dots, z_l) = f(z_2, \dots, z_l, z_l)$ for $f \in S_{\epsilon}(\Gamma)$. Using this T_{σ} , we define a new subspace $S_{\epsilon}(\Gamma)$ of $S_{\epsilon}(\Gamma)$, to be called "the space of symmetric Hilbert cusp forms", as follows;

 $\mathcal{S}_{\epsilon}(\Gamma) = \{ f \in S_{\epsilon}(\Gamma) \mid \mathfrak{T}(e) T_{\sigma} f = T_{\sigma} \mathfrak{T}(e) f \text{ for any } e \in R(\mathfrak{U}_{F}, GL_{2}(F_{A})) \}.$

^{*)} This work was partially supported by the Sakkokai Foundation.