116. On Extensions of my Previous Paper "On the Korteweg.de Vries Equation"

By Masayoshi Tsutsumi
Department of Applied Physics, Waseda University

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1975)

1. Introduction. Previously, in [1] we have proved the following result: Let $\left\{\varphi_{j}(x ; t)\right\}$ and $\left\{\lambda_{j}(t)\right\}, j=1,2, \cdots$, be a complete system of normalized eigenfunctions and eigenvalues, respectively, of the Schrödinger eigenvalue problem in T^{1}, T^{1} being a torus, with t considered as a parameter:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} \varphi_{j}(x ; t)+u(x, t) \varphi_{j}(x ; t)=-\lambda_{j}(t) \varphi_{j}(x ; t), \tag{1.1}\\
\varphi_{j}(\cdot, t) \in C^{2}\left(T^{1}\right), \quad \text { for } \forall t \in(-\infty, \infty),
\end{array}\right.
$$

where $u(x, t)$ is a real function belonging to $C^{\infty}\left(T^{1} \times R^{1}\right)$. Then we have the asymptotic expansion:

$$
\begin{equation*}
\sum_{j=1}^{\infty} e^{-\lambda_{j}(t) s}\left(\varphi_{j}(x, t)\right)^{2} \sim \sum_{i=0}^{\infty} s^{i-1 / 2} P_{i}\left(u, \partial u / \partial u, \cdots, \partial^{2(i-1)} u / \partial x^{2(i-1)}\right) \tag{1.2}
\end{equation*}
$$

where P_{i} are uniquely determined and can be calculated explicitly in terms of the function u and its partial derivatives in x, of order $\leqq 2(i-1)$. If $u=u(x, t)$ evolves according to the equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\sum_{i=1}^{M} f_{i}(t) \frac{\partial}{\partial x} P_{i}\left(u, \cdots, \partial^{2(i-1)} u / \partial x^{2(i-1)}\right), \tag{1.3}\\
u(x, t) \in C^{\infty}\left(T^{1} \times R^{1}\right)
\end{array}\right.
$$

where M is an arbitrary fixed positive integer and $f_{i}(t)$ are arbitrary smooth function of t, then the eigenvalues $\lambda_{f}(t)$ of the associated eigenvalue problem (1.1) are constants in t and every $P_{i}(\cdot)$ appeared in (1.2) is the conserved density of (1.3).

In this note, two extensions of the above result are considered. One is to extend it into $n \times n$ matrix form. The other is to extend it into the case of many space variables.
2. $\boldsymbol{n} \times \boldsymbol{n}$ matrix form. Let $U(x, t)$ be a $n \times n$ Hermitian matrix function whose elements belong to $C^{\infty}\left(T^{1} \times R^{1}\right)$. Below, we denote the set of such matrix functions by $C^{\infty}\left(T^{1} \times R^{1}\right)$. Consider the eigenvalue problem for the following matrix differential equation with t considered as a parameter:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} \Phi+U(x, t) \Phi=-\lambda \Phi, \quad-\infty<x, t<+\infty \tag{2.1}\\
\Phi(\cdot ; t) \in C^{2}\left(T^{1}\right) \quad \text { for all } t \in(-\infty, \infty)
\end{array}\right.
$$

