112. Serial Endomorphism Rings

By Ryohei MAKINO Tokyo University of Education (Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1975)

1. Recently, Ringel and Tachikawa [2] have proved that the endomorphism ring of a minimal generator cogenerator module over a serial ring is again serial. In this connection, the purpose of this note is to obtain a necessary and sufficient condition that the endomorphism rings of modules over a serial ring are serial.

Let R be a ring. An R-module M is said to be serial if its submodules form a finite chain. We call a ring R left (right) serial if $_{R}R(R_{R})$ is a direct sum of serial modules. A left and right serial ring is called *serial*, and this is the same with a generalized uni-serial ring in the sense of Nakayama [1].

A subquotient U of an R-module M will be called *proper* if U=A/Bwith $M \supseteq A \supseteq B \neq 0$, and we shall say that an R-module P appears as a proper subquotient of M if P is isomorphic to a proper subquotient of M. Subquotients U and V of a serial R-module M will be called *joined* if a non-zero submodule of one of U and V coincides with a non-zero factor module of the other of U and V. Let M_1, \dots, M_n be R-modules. An *iso*-subquotient of M_i will be a proper subquotient of M_i which is isomorphic to some M_j . A *pair*-subquotient of M_i will be a factor module of M_i which is isomorphic to a submodule of some M_j or a submodule of M_i which is isomorphic to a factor module of some M_j . With these definitions we can state the following main results.

Theorem 1. Let R be a serial ring and M_1, \dots, M_n indecomposable left R-modules. The following statements are equivalent.

a) The endomorphism ring S of $M = M_1 \oplus \cdots \oplus M_n$ is serial.

b) For each M_i , no iso-subquotient of M_i is joined with any pairsubquotient of M_i .

As a special case, if there are no iso-subquotients, then the condition b) of Theorem 1 is satisfied, so we have

Corollary 1. Let R be a serial ring and M_1, \dots, M_n indecomposable left R-modules. If no M_i appears as a proper subquotient of any M_j , then the endomorphism ring S of $M = M_1 \oplus \dots \oplus M_n$ is serial.

Since each indecomposable module over a serial ring R is serial, no indecomposable injective or projective R-modules appear as a proper subquotient of any indecomposable R-modules. So, the above corollary can be regarded as a generalization of [2, Lemma 5.6].