110. A Note on a Characterization of Principal Ideal Domain

By Monte B. Boisen, Jr.
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061 USA
(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1975)

Let D denote a unique factorization domain (UFD) and let K denote its quotient field. In [1] Iwamoto investigated the D-submodules of K where D was given an additional property. This property was stated in [1] as "every principal ideal of D is maximal" which is clearly a misprint. However, if this property is stated as "every principal prime ideal sf D is maximal" then it is easy to see that D is a principal ideal domain (PID) and that, with this property, all of the proofs leading to the description of the D-submodules of K in [1] are correct. In this note it will be shown that the description of the D-submodules of K given in [1] actually characterizes principal ideal domains and so no more general property than PID can be used in [1].

Let f denote a mapping from P, the set of all prime elements of D, into $Z \cup\{-\infty\}$ such that $f(p)>0$ for only a finite number of elements $p \in P$ and let F denote the set of all such mappings. If we let $M(f)$ $=\left\{x \in K \mid V_{p}(x) \geq f(p)\right.$ for all $\left.p \in P\right\}$ where V_{p} is the p-valuation on K then it is easy to see that $M(f)$ is a D-module for all $f \in F$. In [1] it is shown, in view of the comments above, that if D is a PID, then every D-submodule of K is of the form $M(f)$ for some $f \in F$.

Theorem. Let D denote a UFD. Every D-submodule of K is of the form $M(f)$ for some $f \in F$ if and only if D is a PID.

Proof. The "if" direction was proved in [1]. Suppose that every D-submodule of K is of the form $M(f)$ for some $f \in F$. Let p_{1} and p_{2} be two prime elements in D (if there are fewer than two primes in D, the theorem is obviously true). Consider $N=\left\{d_{1} / p_{1}+d_{2} / p_{2} \mid d_{1}, d_{2} \in D\right\}$. Clearly N is a D-submodule of K. Then, by assumption, $N=M(f)$ for some $f \in F$. Since $1 / p_{1}$ is an element of $N, f\left(p_{1}\right) \leq-1$, and similarly $f\left(p_{2}\right) \leq-1$. Also, since $1 \in N, f(p) \leq 0$ for all primes p. This implies that $1 / p_{1} p_{2} \in N$. Therefore, $1 / p_{1} p_{2}=d_{1} / p_{1}+d_{2} / p_{2}$ for some d_{1} and d_{2} in D. Consequently, $1=d_{1} p_{2}+d_{2} p_{1}$ and so p_{1} and p_{2} are not in the same maximal ideal. Hence every maximal ideal of D contains exactly one prime element which implies that D is a PID.

Note that the proof of the theorem shows that only those D submodules of K containing D need be considered. Hence a UFD D

