109. On the Global Existence of Solutions of Differential Equations on Closed Subsets of a Banach Space

By Nobuyuki KENMOCHI*) and Tadayasu TAKAHASHI**)

(Comm. by Kôsaku Yosida, M. J. A., Sept. 12, 1975)

1. Introduction. Let D be a subset of a real Banach space X and A be a continuous function from $[0, +\infty) \times D$ into X. In this paper we consider the initial value problem

(IVP) $u' = A(t, u), \quad u(0) = x,$

where x is given in D. By a solution of (IVP) or of (IVP; x), we mean a continuously differentiable function u from $[0, +\infty)$ into D such that u(0)=x and u'(t)=A(t, u(t)) for all $t \ge 0$.

This kind of problem has been treated by many authors; for example, see Crandall [1], Lovelady-Martin [3], Martin [4], Pavel [5], [6] and the cited papers in them.

The purpose of this paper is to establish a global existence theorem for (IVP) under some conditions which are similar to those treated in [4] but somewhat weaker than them. Our theorem gives some simplifications and improvements of results in [4] and also provides an answer to a question raised by Martin [4].

2. Existence theorem. Let X be a real Banach space, X^* the dual space of X and denote by $\langle x, f \rangle$ the natural pairing between $x \in X$ and $f \in X^*$. For each $x, y \in X$, define

 $\langle y, x \rangle_i = \inf \{\langle y, f \rangle; f \in F(x)\},\$

where F is the duality mapping from X into X^{*}, i.e., F is defined by $F(x) = \{f \in X^*; \langle x, f \rangle = ||x||^2 = ||f||^2\}$

for each $x \in X$.

Now, let *D* be a closed subset of *X*, *A* a function from $[0, +\infty) \times D$ into *X* and consider the following conditions:

(A1) A is continuous from $[0, +\infty) \times D$ into X;

(A2) there is a real-valued continuous function ω defined on $[0, +\infty)$ such that

$$\langle A(t,x) - A(t,y), x - y \rangle_i \leq \omega(t) \|x - y\|^2$$

for all (t, x) and (t, y) in $[0, +\infty) \times D$;

(A3) $\liminf_{h\to 0+} h^{-1}d(x+hA(t,x),D)=0$ for each (t,x) in $[0, +\infty)\times D$, where d(z,D) stands for the distance from $z \in X$ to D.

^{*)} Department of Mathematics, Faculty of Education, Chiba University, Chiba, Japan.

^{**)} National Aerospace Laboratory, Tokyo, Japan.