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1. Introduction. In this paper the notion of shape is understood
in the sense of Mardeid [2] and our approach to shape theory (cf. [5],
[6]) will be used.

Our approach enables us to define the k-th homotopy pro-group
{(X, x0)} of a pointed topological space (X, x0). The homotopy pro-
groups play the central role in the Whitehead theorem in shape theory.

Theorem 1.0 (Morita [6]). Let f (X, Xo)-.(Y, Yo) be a shape mor-
phism of pointed connected topological spaces. If the induced mor-
phism (f)" ((X, x0))-*{(Y, Y0)} of homotopy pro-groups is an iso-
morphism for l<=k<=n and an epimorphism for I--n+ l where n+ l
--max (1 / dim X, dim Y) c, then f is a shape equivalence.

In this paper, by using homotopy pro-groups we shall formulate
a Vietoris theorem in shape theory as follows.

Theorem 1.1. Let f" (X, Xo)-.(Y, Yo) be a closed continuous map
from a pointed metrizable space (X, Xo) onto a pointed topological space
(Y, Yo) such that f-l(y) is approximatively k-connected for every point
y of Y and for O<__k<=n. Then the induced morphism z(f)" z((X, x0)}
-u((Y, Y0)} of homotopy pro-groups is an isomorphism for l<=k<=n
and an epimorphism for k--n+ 1.

The following is a direct consequene of Theorems 1.0 and 1.1 as
far as X is connected or locally connected.

Theorem 1.2. Let f be the same as in Theorem 1.1. If, in addi-
tion, dim X<=n and dim Ygn/ 1, then f is a shape equivalence.

As is quoted in [3, p. 319], in the first version of [5] we defined the
k-th shape group _(X, x0) of a pointed topological space (X, x0)to be
the inverse limit of {(X, x0)}. For metric compacta M. Moszyfiska
[8] proved that the shape groups are naturally isomorphic to the funda-
mental groups in the sense of K. Borsuk. Thus, our Theorem 1.1
extends a result for metric compacta which was announced by S. Bogaty
[1] and proved by K. Kuperberg [9].

2. Preliminaries. Let X be a metrizable space. Then there is
a metric space X0 which is an ANR for metric spaces and contains X
as its closed subset. Let f" (X, Xo)-.(Y, Yo) be a closed continuous map
from (X, x0) onto a pointed topological space (Y, Y0). Then the collec-
tion (f-(Y) IY e Y} 0 {{x}]x e Xo--X} of subsets of X0 defines an upper


