156. On the Difference between r Consecutive Ordinates of the Zeros of the Riemann Zeta Function

By Akio FUJII

Department of Mathematics, Rikkyo University, Tokyo (Comm. by Kunihiko Kodaira, M. J. A., Dec. 12, 1975)

- § 1. Introduction. Let γ_n be the *n*-th ordinate of the zeros of the Riemann zeta function $\zeta(s)$ satisfying $0 < \gamma_n \le \gamma_{n+1}$. Here we are concerned with the following problems.
- (i) To estimate $S_{r,k}(T) = \frac{1}{N(T)} \sum_{T < \tau_n \le 2T} d(\gamma_n, r)^k$ for integral $k \ge 1$ and $r \ge 1$, where N(T) is the number of the zeros of $\zeta(s)$ in 0 < Re s < 1, $0 < \text{Im } s \le T$ as usual and $d(\gamma_n, r)$ is $(\gamma_{n+r} \gamma_n)/r$.
- (ii) To estimate the number $N_r \left(\frac{C}{\log T}, T\right)$ of γ_n in $T < \gamma_n \leqslant 2T$ satisfying $d(\gamma_n, r) \geqslant C/\log T$.

As to (i) we have shown in [1], [3] that

$$S_{1,2}(T) \ll (\log T)^{-2}$$
.

On the other hand the following result is announced in Zentralblatt [4];

$$S_{1,2k+1}(T) \! \ll \! \frac{(2k)\,!\, 2^{2k}(2k+1)(\log\log T)^k}{k\,!\, (\log T)^{2k+1}}$$

for integral k=0 (log T). Here we shall prove the following

Theorem 1. Let $T > T_0$. Then for k in $1 \le k \ll (T \log T)^{2/3}$ and r in $1 \le r \ll k^{3/2}$, we have

$$S_{r,k}(T) \ll \frac{(Ak)^{3k^2/(2k+1)} (\log (3+k))^k r^{-2k^2/(2k+1)}}{(\log T)^k},$$

where A is some positive absolute constant.

As to (ii) we have shown in [1], [3] that

$$N_r\!\!\left(\!\!\!\begin{array}{c} 2\pi(1+\alpha) \\ -\log T \end{array}\!\!,\, T\right) \!\gg\! N(T) \exp\left(-(\log \log C)^{1-\epsilon}\right)$$

for $C > C_0$, integral r less than $A (\log C)^{1/2} (\log \log C)^{1/2+\epsilon}$ and

 $a = (A (\log C)^{1/2} (\log \log C)^{1/2+\epsilon} - r)/(C + A (\log C)^{1/2} (\log \log C)^{1/2+\epsilon} - r),$ where A's above (and also in this paper) are some positive absolute constants and ϵ 's are arbitrarily small positive numbers. Here we shall prove

Theorem 2. For $T > T_0$, $C > C_0$ and r in $1 \le r \le T \log T$ C^{-1} , we have $N_r \left(\frac{C}{\log T}, T \right) \ll N(T) \exp\left(-A(rC)^{2/3} (\log rC)^{-1/3} \right)$.

- § 2. Proof of Theorem.
 - 2-1. To prove our theorem we use the following