156. On the Difference between r Consecutive Ordinates of the Zeros of the Riemann Zeta Function

By Akio FuJiI
Department of Mathematics, Rikkyo University, Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., Dec. 12, 1975)

§ 1. Introduction. Let γ_{n} be the n-th ordinate of the zeros of the Riemann zeta function $\zeta(s)$ satisfying $0<\gamma_{n} \leq \gamma_{n+1}$. Here we are concerned with the following problems.
(i) To estimate $S_{r, k}(T)=\frac{1}{N(T)} \sum_{T<r_{n} \leq 2 T} d\left(\gamma_{n}, r\right)^{k}$ for integral $k \geqslant 1$ and $r \geqslant 1$, where $N(T)$ is the number of the zeros of $\zeta(s)$ in $0<\operatorname{Re} s<1$, $0<\operatorname{Im} s \leqslant T$ as usual and $d\left(\gamma_{n}, r\right)$ is $\left(\gamma_{n+r}-\gamma_{n}\right) / r$.
(ii) To estimate the number $N_{r}\left(\frac{C}{\log T}, T\right)$ of γ_{n} in $T<\gamma_{n} \leqslant 2 T$ satisfying $d\left(\gamma_{n}, r\right) \geqslant C / \log T$.

As to (i) we have shown in [1], [3] that

$$
S_{1,2}(T) \ll(\log T)^{-2}
$$

On the other hand the following result is announced in Zentralblatt [4];

$$
S_{1,2 k+1}(T) \ll \frac{(2 k)!2^{2 k}(2 k+1)(\log \log T)^{k}}{k!(\log T)^{2 k+1}}
$$

for integral $k=o(\log T)$. Here we shall prove the following
Theorem 1. Let $T>T_{0}$. Then for k in $1 \leqslant k \ll(T \log T)^{2 / 3}$ and r in $1 \leqslant r \ll k^{3 / 2}$, we have

$$
S_{r, k}(T) \ll \frac{(A k)^{3 k 2 /(2 k+1)}(\log (3+k))^{k} r^{-2 k^{2} /(2 k+1)}}{(\log T)^{k}}
$$

where A is some positive absolute constant.
As to (ii) we have shown in [1], [3] that

$$
N_{r}\left(\frac{2 \pi(1+a)}{\log T}, T\right) \gg N(T) \exp \left(-(\log \log C)^{1-\varepsilon}\right)
$$

for $C>C_{0}$, integral r less than $A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}$ and
$a=\left(A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}-r\right) /\left(C+A(\log C)^{1 / 2}(\log \log C)^{1 / 2+\varepsilon}-r\right)$, where A 's above (and also in this paper) are some positive absolute constants and ε 's are arbitrarily small positive numbers. Here we shall prove

Theorem 2. For $T>T_{0}, C>C_{0}$ and r in $1 \leqslant r \leqslant T \log T C^{-1}$, we have

$$
N_{r}\left(\frac{C}{\log T}, T\right) \ll N(T) \exp \left(-A(r C)^{2 / 3}(\log r C)^{-1 / 3}\right)
$$

§ 2. Proof of Theorem.
2-1. To prove our theorem we use the following

