175. Global Analytic-Hypoellipticity of the ∂-Neumann Problem

By Gen Komatsu

Mathematical Institute, Tôhoku University

(Comm. by Kunihiko Kodaira, M. J. A., Dec. 12, 1975)

1. Statement of Theorem. Let $M \subset C^n$ be a domain with compact closure \overline{M} and (real)-analytic boundary bM. We denote by r the distance function to bM measured as positive outside and negative inside M. We define Ω_ρ' as the tubular neighborhood of bM in C^n with small width ρ , and set $\Omega_\rho = \overline{M} \cap \Omega_\rho'$. By T_t we denote the subbundle of the complexified tangent bundle CT over Ω_ρ' of all vectors X with $\langle dr, X \rangle = 0$, where $\langle \cdot, \rangle$ is the duality between covectors and vectors. Splitting CT as $CT = T^{1,0} \oplus T^{0,1}$ with the subbundle $T^{1,0}$ of vectors of type (1,0) and its complex conjugate $T^{0,1}$, we set $T_t^{1,0} = T^{1,0} \cap T_t$ and $T_t^{0,1} = \overline{T_t^{1,0}}$. Then the Levi form at $P \in \Omega_\rho'$ is defined on the fibre $(T_t^{1,0})_P$ of $T_t^{1,0}$ at P by

$$(T_t^{1,0})_{\mathbf{P}} \times (T_t^{1,0})_{\mathbf{P}} \ni (X_1, X_2) \mapsto \langle \partial \bar{\partial} r, X_1 \wedge \overline{X}_2 \rangle.$$

Denote by $\mathcal{A}^{p,q}$ the space of forms of type (p,q) on \overline{M} which have C^{∞} extensions to \mathbb{C}^n , and define the L^2 -inner product by

$$(\varphi, \psi) = \int_{\mathbb{M}} \langle \varphi, \psi \rangle dV, \qquad \varphi, \psi \in \mathcal{A}^{p,q},$$

with the pointwise inner product \langle , \rangle and the volume form dV on M. For the Cauchy-Riemann operator $\bar{\partial}: \mathcal{A}^{p,q-1} \to \mathcal{A}^{p,q}$ and its formal adjoint $\partial: \mathcal{A}^{p,q} \to \mathcal{A}^{p,q-1}$, integration by parts gives us

$$(\vartheta\varphi,\psi) = (\varphi,\bar{\partial}\psi) + \int_{\partial M} \langle \sigma(\vartheta,dr)\varphi,\psi\rangle dS,$$

where $\sigma(\cdot, dr)$ denotes the principal symbol of \cdot at dr, and dS the volume form on bM. We set $\mathcal{D}^{p,q} = \{\varphi \in \mathcal{A}^{p,q} ; \sigma(\vartheta, dr)\varphi = 0 \text{ on } bM\}$, and define a quadratic form on $\mathcal{D}^{p,q}$ by

$$Q(\varphi, \psi) = (\bar{\partial}\varphi, \bar{\partial}\psi) + (\vartheta\varphi, \vartheta\psi) + (\varphi, \psi), \qquad \varphi, \psi \in \mathcal{D}^{p,q}.$$

Consider the following variational problem (cf. [1], [3]): Given $\lambda \in C$ and $\alpha \in \mathcal{A}^{p,q}$ with q > 0, find $\varphi \in \mathcal{D}^{p,q}$ such that

(1)
$$Q(\varphi, \phi) + (\lambda \varphi, \phi) = (\alpha, \phi)$$
 for all $\phi \in \mathcal{D}^{p,q}$.
Now we have

Theorem. If the Levi form is non-degenerate and does not have exactly q negative eigenvalues in Ω'_{ρ} , then every solution φ of the equation (1) is analytic in Ω_{ρ} whenever α is analytic there.

We remark that this Theorem can easily be generalized to the case of domains M in complex manifolds with analytic hermitian metric.