172. On Holomorphically induced Representations of Split Solvable Lie Groups

By Hidenori Fujiwara
(Comm. by Kôsaku Yosida, m. J. A., Nov. 12, 1975)

We shall give an answer to three open problems for holomorphically induced representations of split solvable Lie groups.

1. Let G be a simply connected split solvable Lie group with Lie algebra \mathfrak{g}, f a linear form on $\mathfrak{g}, \mathfrak{h}$ a positive polarization of \mathfrak{g} at $f, \rho(f, \mathfrak{h})$ the holomorphically induced representation of G constructed from \mathfrak{h} and let $\mathscr{H}(f, \mathfrak{h})$ be the space of $\rho(f, \mathfrak{h})$ [1]. In this note, we find a necessary and sufficient condition on (f, \mathfrak{h}) for the non-vanishing of $\mathcal{H}(f, \mathfrak{h})$. We then show that $\rho(f, \mathfrak{h})(\neq 0)$ is irreducible if and only if the Pukanszky condition is satisfied, and in this case $\rho(f, \mathfrak{h})$ is independent of \mathfrak{h}. For reducible $\rho(f, \mathfrak{h})$, we describe its decomposition into irreducible components.

The details will appear elsewhere.
2. For a real vector space V, we denote its dual by V^{*}. Let $\mathfrak{b}=\mathfrak{h} \cap \mathfrak{g}, \mathfrak{e}=(\mathfrak{h}+\overline{\mathfrak{h}}) \cap \mathfrak{g}$ and let $\mathfrak{b}=\mathfrak{b} \cap \operatorname{ker} f$. \mathfrak{b} and \mathfrak{b} are ideals of e. Let $\tilde{\mathrm{e}}=\mathrm{e} / \mathfrak{b}, \mathfrak{z}=\mathfrak{b} / \mathfrak{b}, \pi: e \rightarrow \tilde{e}$ the natural projection, $f_{0}=f \mid \mathfrak{e} \in \mathrm{e}^{*}, \mathfrak{h}=\pi(\mathfrak{h})$ and let $\tilde{f} \in(\tilde{e})^{*}$ such that $\tilde{f} \circ \pi=f_{0}$. We denote by $P^{+}(f, g)$ the set of positive polarizations of g at f. Then, as a corollary of the fundamental theorem for normal Kähler algebras [3], we have the following theorem.

Theorem 1. ẽ can be decomposed into a semi-direct sum $\tilde{\mathfrak{e}}=\mathfrak{n}+\mathfrak{m}, \mathfrak{m}$: subalgebra, \mathfrak{n} : ideal, and this decomposition satisfies the following conditions:

Let $\mathfrak{K}_{1}=\mathfrak{h} \cap \mathfrak{n}^{C}, \mathfrak{K}_{2}=\mathfrak{h} \cap \mathfrak{m}^{C}, \tilde{f}_{1}=\tilde{f} \mid \mathfrak{n} \in \mathfrak{n}^{*}$ and let $\tilde{f}_{2}=\tilde{f} \mid \mathfrak{m} \in \mathfrak{m}^{*}$.
a) \mathfrak{n} is a Heisenberg algebra with center z and $\mathfrak{H}_{1} \in P^{+}\left(\tilde{f}_{1}, \mathfrak{n}\right)$.
b) $\mathfrak{h}_{2} \in P^{+}\left(\tilde{f}_{2}, \mathfrak{m}\right)$ and $\mathfrak{G}_{2}+\overline{\mathfrak{h}}_{2}=\mathfrak{m}^{c}, \mathfrak{h}_{2} \cap \mathfrak{m}=\{0\}$. We define the linear operator j on \mathfrak{m} by $j(X)=-i X$ if $X \in \mathfrak{h}_{2}, j(X)=i X$ if $X \in \overline{\mathfrak{h}}_{2}$. Then (\mathfrak{m}, j) is a narmal j-algebra.

Note that \mathfrak{n} or \mathfrak{m} may be $\{0\}$.
3. We put $S(X, Y)=\tilde{f}_{2}([X, j Y])$ for $X, Y \in \mathfrak{m}$.

Theorem 2 (Pjateckiǐ-Šapiro [4]). Let \mathfrak{a} be the orthogonal complement of $\eta=[\mathfrak{m}, \mathfrak{m}]$ with respect to the form S. \mathfrak{a} is a commutative subalgebra of $\mathfrak{m}, \mathfrak{n}=\mathfrak{a}+\eta$, and the adjoint representation of \mathfrak{a} on η is real diagonalizable. Thus, we have a decomposition of η into root spaces: $\eta=\sum \eta^{\alpha}$, where $\alpha \in \mathfrak{a}^{*}$ and $\eta^{\alpha}=\{X \in \eta ;[A, X]=\alpha(A) X$ for all $A \in \mathfrak{a}\}$. Let $\left\{\eta^{\alpha}\right\}, 1 \leq i \leq r$ be those root spaces η^{α} for which $j\left(\eta^{\alpha}\right) \subset \mathfrak{a}$.

