2. On Spaces with a Map $CP^n \rightarrow M$ of Degree One

By Hiroo Shiga

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1976)

§1. Introduction. Let M be a connected oriented closed topological m manifold. It is known in [2] that if $f S^m \to M$ is a map of degree one, then f is a homotopy equivalence. And moreover L.E. Spence has proved in [3] that if a map $f S^p \times S^q \to M$ is of degree one then M has the homotopy type of S^{p+q} or f is a homotopy equivalence. In this note we shall consider the case of complex projective space. Then we shall prove

Theorem. If M admits a map $f CP^n \rightarrow M$ of degree one, then M has the homotopy type of S^{2n}, CP^n , or cohomological quartenion projective space. Especially if n is odd M has the homotopy type of S^{2n} or CP^n .

Corollary. Let QP^n be the *n* dimensional quaternion projective space. If *M* admits a map $f QP^n \rightarrow M$ of degree one, then *M* has the homotopy type of S^{4n} or *f* is a homotopy equivalence.

§ 2. Some cohomological conditions. At first we note the following lemma in [2]

Lemma 1. Let M, N be connected oriented closed topological n manifold. If $f: M \rightarrow N$ is a degree one map, then

(1) $f_{\sharp}\pi_1(M) \rightarrow \pi_1(N)$ is an epimorphism.

(2) $f_*H_i(M) \rightarrow H_i(N)$ is a split epimorphism.

(3) $f^*H^i(M) \rightarrow H^i(N)$ is a monomorphism.

Now let $f: \mathbb{C}P^n \to M$ be a map of degree one. Then we obtain from Lemma 1 that M is simply connected and $H^i(M) \cong 0$ $(i=1 \mod 2)$. Thus we may assume that $H^{ik}(M) \cong Z$, and $H^i(M) \cong Z$ $(0 \le i \le 2k)$.

Lemma 2. $n \equiv 0 \pmod{2}$ and $H^*(M) = \frac{Z[\alpha]}{(\alpha^{n/k} + 1)}$

Proof. Let α be a generator of $H^{2k}(M) = Z$, and μ_M be the fundamental class of $H^{2n}(M)$. By (3) of Lemma 1 we have $f(\alpha) = mx^k \ (m \neq 0)$ where x denotes the generator of $H^2(CP^n)$. Therefore, from $f(\alpha^s) = m^s x^{ks}$, we obtain that

 $H^{2i}(M) \cong Z$, $i=0 \pmod{k}$ and $i \leq n$.

Suppose that n=ks+r ($0 \le r \le k$). Then by the duality of $H^*(M)$, we have $H^{2r}(M)=0$. But this contradicts the assumption. Thus we have $k=0 \pmod{n}$. Next we suppose that $H^{2a}(M)=Z$ ($jk\le a\le (j+1)k\le n$, for some j) and let β be a generator of $H^{2a}(M)$. Then we have