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1. Let p be a prime number and BP.(--) be the Brown-Peterson
homology theory with the coefficient BP,Z()[v, ]. Landweber
proved the following theorem [4].

Exact functor theorem. Let G be a BP.-module and I--(p, vl,
..,v) be the ideal of BP, generated by p, vl,...,v. Then if the

homomorphism
v+l" G/IGG/IG, v+(g)--v+.g,

is monic for each n>_--l, then BP.(--)G is a homology theory.

On the other hand Sullivan-Baas constructed bordism theories with
singularities (Math. Scan. 33, 1973). Analogously we can. define the
homology theory BP(I),(--) with the coefficient BP./IZ[v/,...]
[2], [8]. In this paper we shall prove the exact functor theorem for
BP(I),-theory.

Theorem. Let G be a BP./I-module. If the homomorphism
v+" G/IGG/IG

is monic for each m>=n, then BP(In).(--) ) G is a homology theory.
BP,/In

Remark. We always consider reduced homology theories in the
category o finite CW-complexes.
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2. First, we take argument in the cohomology theory BP(I)*(--)
which is the Spanier-Whitehead dual to BP(I).(--).

Lemma 1. Let M be a finitely generated BP*/In- and BP(In)*
(BP(In))-module. Then there exists a BP*/In-filtration such that
(1) M--MorMon... M={0}
( 2 ) Ms/M+NBP*/J for O<=s<k
where J is an (invariant) ideal of BP* satisfying t(J)cJ for any op-
eration e BP*(BP).

Proof. For each teBP*(BP), let t be the set o 0
e BP(I)*(BP(I)) which commute the following diagram.

BP > BP(In)

SBP SBP(In)


